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We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the
human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a
number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human
genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively
transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts,
and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new
understanding about transcription start sites, including their relationship to specific regulatory sequences and features of
chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged,
including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of
information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has
yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these
studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

The human genome is an elegant but cryptic store of information. The
roughly three billion bases encode, either directly or indirectly, the
instructions for synthesizing nearly all the molecules that form each
human cell, tissue and organ. Sequencing the human genome1–3 pro-
vided highly accurate DNA sequences for each of the 24 chromosomes.
However, at present, we have an incomplete understanding of the
protein-coding portions of the genome, and markedly less under-
standing of both non-protein-coding transcripts and genomic ele-
ments that temporally and spatially regulate gene expression. To
understand the human genome, and by extension the biological pro-
cesses it orchestrates and the ways in which its defects can give rise to
disease, we need a more transparent view of the information it encodes.

The molecular mechanisms by which genomic information directs
the synthesis of different biomolecules has been the focus of much of
molecular biology research over the last three decades. Previous stud-
ies have typically concentrated on individual genes, with the resulting
general principles then providing insights into transcription, chro-
matin remodelling, messenger RNA splicing, DNA replication and
numerous other genomic processes. Although many such principles
seem valid as additional genes are investigated, they generally have
not provided genome-wide insights about biological function.

The first genome-wide analyses that shed light on human genome
function made use of observing the actions of evolution. The ever-
growing set of vertebrate genome sequences4–8 is providing increas-
ing power to reveal the genomic regions that have been most and least
acted on by the forces of evolution. However, although these studies
convincingly indicate the presence of numerous genomic regions
under strong evolutionary constraint, they have less power in iden-
tifying the precise bases that are constrained and provide little, if any,
insight into why those bases are biologically important. Furthermore,
although we have good models for how protein-coding regions

evolve, our present understanding about the evolution of other func-
tional genomic regions is poorly developed. Experimental studies
that augment what we learn from evolutionary analyses are key for
solidifying our insights regarding genome function.

The Encyclopedia of DNA Elements (ENCODE) Project9 aims to
provide a more biologically informative representation of the human
genome by using high-throughput methods to identify and catalogue
the functional elements encoded. In its pilot phase, 35 groups pro-
vided more than 200 experimental and computational data sets that
examined in unprecedented detail a targeted 29,998 kilobases (kb) of
the human genome. These roughly 30 Mb—equivalent to ,1% of
the human genome—are sufficiently large and diverse to allow for
rigorous pilot testing of multiple experimental and computational
methods. These 30 Mb are divided among 44 genomic regions;
approximately 15 Mb reside in 14 regions for which there is already
substantial biological knowledge, whereas the other 15 Mb reside in
30 regions chosen by a stratified random-sampling method (see
http://www.genome.gov/10506161). The highlights of our findings
to date include:
$ The human genome is pervasively transcribed, such that the
majority of its bases are associated with at least one primary tran-
script and many transcripts link distal regions to established protein-
coding loci.
$ Many novel non-protein-coding transcripts have been identified,
with many of these overlapping protein-coding loci and others
located in regions of the genome previously thought to be transcrip-
tionally silent.
$ Numerous previously unrecognized transcription start sites
have been identified, many of which show chromatin structure
and sequence-specific protein-binding properties similar to well-
understood promoters.

*A list of authors and their affiliations appears at the end of the paper.
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$ Regulatory sequences that surround transcription start sites
are symmetrically distributed, with no bias towards upstream
regions.
$ Chromatin accessibility and histone modification patterns are
highly predictive of both the presence and activity of transcription
start sites.
$ Distal DNaseI hypersensitive sites have characteristic histone
modification patterns that reliably distinguish them from promo-
ters; some of these distal sites show marks consistent with insulator
function.
$ DNA replication timing is correlated with chromatin structure.
$ A total of 5% of the bases in the genome can be confidently
identified as being under evolutionary constraint in mammals; for
approximately 60% of these constrained bases, there is evidence of
function on the basis of the results of the experimental assays per-
formed to date.
$ Although there is general overlap between genomic regions iden-
tified as functional by experimental assays and those under evolu-
tionary constraint, not all bases within these experimentally defined
regions show evidence of constraint.
$ Different functional elements vary greatly in their sequence vari-
ability across the human population and in their likelihood of res-
iding within a structurally variable region of the genome.
$ Surprisingly, many functional elements are seemingly uncon-
strained across mammalian evolution. This suggests the possibility
of a large pool of neutral elements that are biochemically active but
provide no specific benefit to the organism. This pool may serve as a
‘warehouse’ for natural selection, potentially acting as the source
of lineage-specific elements and functionally conserved but non-
orthologous elements between species.

Below, we first provide an overview of the experimental techniques
used for our studies, after which we describe the insights gained from
analysing and integrating the generated data sets. We conclude with a
perspective of what we have learned to date about this 1% of the

human genome and what we believe the prospects are for a broader
and deeper investigation of the functional elements in the human
genome. To aid the reader, Box 1 provides a glossary for many of the
abbreviations used throughout this paper.

Experimental techniques

Table 1 (expanded in Supplementary Information section 1.1) lists
the major experimental techniques used for the studies reported here,
relevant acronyms, and references reporting the generated data sets.
These data sets reflect over 400 million experimental data points
(603 million data points if one includes comparative sequencing
bases). In describing the major results and initial conclusions, we
seek to distinguish ‘biochemical function’ from ‘biological role’.
Biochemical function reflects the direct behaviour of a molecule(s),
whereas biological role is used to describe the consequence(s) of this
function for the organism. Genome-analysis techniques nearly
always focus on biochemical function but not necessarily on bio-
logical role. This is because the former is more amenable to large-
scale data-generation methods, whereas the latter is more difficult to
assay on a large scale.

The ENCODE pilot project aimed to establish redundancy with
respect to the findings represented by different data sets. In some
instances, this involved the intentional use of different assays that were
based on a similar technique, whereas in other situations, different
techniques assayed the same biochemical function. Such redundancy
has allowed methods to be compared and consensus data sets to be
generated, much of which is discussed in companion papers, such
as the ChIP-chip platform comparison10,11. All ENCODE data have
been released after verification but before this publication, as befits
a ‘community resource’ project (see http://www.wellcome.ac.uk/
doc_wtd003208.html). Verification is defined as when the experiment
is reproducibly confirmed (see Supplementary Information section
1.2). The main portal for ENCODE data is provided by the UCSC
Genome Browser (http://genome.ucsc.edu/ENCODE/); this is

Box 1 | Frequently used abbreviations in this paper

AR Ancient repeat: a repeat that was inserted into the early
mammalian lineage and has since become dormant; the majority of
ancient repeats are thought to be neutrally evolving.
CAGE tag A short sequence from the 59 end of a transcript
CDS Coding sequence: a region of a cDNA or genome that encodes
proteins
ChIP-chip Chromatin immunoprecipitation followed by detection of
the products using a genomic tiling array
CNV Copy number variants: regions of the genome that have large
duplications in some individuals in the human population
CS Constrained sequence: a genomic region associated with evidence
of negative selection (that is, rejection of mutations relative to neutral
regions)
DHS DNaseI hypersensitive site: a region of the genome showing a
sharply different sensitivity to DNaseI compared with its immediate
locale
EST Expressed sequence tag: a short sequence of a cDNA indicative of
expression at this point
FAIRE Formaldehyde-assisted isolation of regulatory elements: a
method to assay open chromatin using formaldehyde crosslinking
followed by detection of the products using a genomic tiling array
FDR False discovery rate: a statistical method for setting thresholds on
statistical tests to correct for multiple testing
GENCODE Integrated annotation of existing cDNA and protein
resources to define transcripts with both manual review and
experimental testing procedures
GSC Genome structure correction: a method to adapt statistical tests
to make fewer assumptions about the distribution of features on the
genome sequence. This provides a conservative correction to standard
tests
HMM Hidden Markov model: a machine-learning technique that can
establish optimal parameters for a given model to explain the observed
data

Indel An insertion or deletion; two sequences often show a length
difference within alignments, but it is not always clear whether this
reflects a previous insertion or a deletion
PET A short sequence that contains both the 59 and 39 ends of a
transcript
RACE Rapid amplification of cDNA ends: a technique for amplifying
cDNA sequences between a known internal position in a transcript and
its 59 end
RFBR Regulatory factor binding region: a genomic region found by a
ChIP-chip assay to be bound by a protein factor
RFBR-Seqsp Regulatory factor binding regions that are from
sequence-specific binding factors
RT–PCR Reverse transcriptase polymerase chain reaction: a
technique for amplifying a specific region of a transcript
RxFrag Fragment of a RACE reaction: a genomic region found to be
present in a RACE product by an unbiased tiling-array assay
SNP Single nucleotide polymorphism: a single base pair change
between two individuals in the human population
STAGE Sequence tag analysis of genomic enrichment: a method similar
to ChIP-chip for detecting protein factor binding regions but using
extensive short sequence determination rather than genomic tiling arrays
SVM Support vector machine: a machine-learning technique that can
establish an optimal classifier on the basis of labelled training data
TR50 A measure of replication timing corresponding to the time in the
cell cycle when 50% of the cells have replicated their DNA at a specific
genomic position
TSS Transcription start site
TxFrag Fragment of a transcript: a genomic region found to be present
in a transcript by an unbiased tiling-array assay
Un.TxFrag A TxFrag that is not associated with any other functional
annotation
UTR Untranslated region: part of a cDNA either at the 59 or 39 end that
does not encode a protein sequence
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augmented by multiple other websites (see Supplementary Informa-
tion section 1.1).

A common feature of genomic analyses is the need to assess the
significance of the co-occurrence of features or of other statistical
tests. One confounding factor is the heterogeneity of the genome,
which can produce uninteresting correlations of variables distributed
across the genome. We have developed and used a statistical frame-
work that mitigates many of these hidden correlations by adjusting
the appropriate null distribution of the test statistics. We term this
correction procedure genome structure correction (GSC) (see Sup-
plementary Information section 1.3).

In the next five sections, we detail the various biological insights of
the pilot phase of the ENCODE Project.

Transcription
Overview. RNA transcripts are involved in many cellular functions,
either directly as biologically active molecules or indirectly by encod-
ing other active molecules. In the conventional view of genome
organization, sets of RNA transcripts (for example, messenger
RNAs) are encoded by distinct loci, with each usually dedicated to
a single biological role (for example, encoding a specific protein).
However, this picture has substantially grown in complexity in recent
years12. Other forms of RNA molecules (such as small nucleolar
RNAs and micro (mi)RNAs) are known to exist, and often these
are encoded by regions that intercalate with protein-coding genes.
These observations are consistent with the well-known discrepancy
between the levels of observable mRNAs and large structural RNAs

compared with the total RNA in a cell, suggesting that there are
numerous RNA species yet to be classified13–15. In addition, studies
of specific loci have indicated the presence of RNA transcripts that
have a role in chromatin maintenance and other regulatory control.
We sought to assay and analyse transcription comprehensively across
the 44 ENCODE regions in an effort to understand the repertoire of
encoded RNA molecules.
Transcript maps. We used three methods to identify transcripts
emanating from the ENCODE regions: hybridization of RNA (either
total or polyA-selected) to unbiased tiling arrays (see Supplementary
Information section 2.1), tag sequencing of cap-selected RNA at the
59 or joint 59/39 ends (see Supplementary Information sections 2.2
and S2.3), and integrated annotation of available complementary
DNA and EST sequences involving computational, manual, and
experimental approaches16 (see Supplementary Information section
2.4). We abbreviate the regions identified by unbiased tiling arrays as
TxFrags, the cap-selected RNAs as CAGE or PET tags (see Box 1), and
the integrated annotation as GENCODE transcripts. When a TxFrag
does not overlap a GENCODE annotation, we call it an Un.TxFrag.
Validation of these various studies is described in papers reporting
these data sets17 (see Supplementary Information sections 2.1.4 and
2.1.5).

These methods recapitulate previous findings, but provide
enhanced resolution owing to the larger number of tissues sampled
and the integration of results across the three approaches (see Table 2).
To begin with, our studies show that 14.7% of the bases represented in
the unbiased tiling arrays are transcribed in at least one tissue sample.
Consistent with previous work14,15, many (63%) TxFrags reside out-
side of GENCODE annotations, both in intronic (40.9%) and inter-
genic (22.6%) regions. GENCODE annotations are richer than the
more-conservative RefSeq or Ensembl annotations, with 2,608 tran-
scripts clustered into 487 loci, leading to an average of 5.4 transcripts
per locus. Finally, extensive testing of predicted protein-coding
sequences outside of GENCODE annotations was positive in only
2% of cases16, suggesting that GENCODE annotations cover nearly
all protein-coding sequences. The GENCODE annotations are cate-
gorized both by likely function (mainly, the presence of an open
reading frame) and by classification evidence (for example, transcripts
based solely on ESTs are distinguished from other scenarios); this
classification is not strongly correlated with expression levels (see
Supplementary Information sections 2.4.2 and 2.4.3).

Analyses of more biological samples have allowed a richer descrip-
tion of the transcription specificity (see Fig. 1 and Supplementary
Information section 2.5). We found that 40% of TxFrags are present
in only one sample, whereas only 2% are present in all samples.
Although exon-containing TxFrags are more likely (74%) to be
expressed in more than one sample, 45% of unannotated TxFrags
are also expressed in multiple samples. GENCODE annotations of
separate loci often (42%) overlap with respect to their genomic coor-
dinates, in particular on opposite strands (33% of loci). Further
analysis of GENCODE-annotated sequences with respect to the posi-
tions of open reading frames revealed that some component exons do
not have the expected synonymous versus non-synonymous substi-
tution patterns of protein-coding sequence (see Supplement Infor-
mation section 2.6) and some have deletions incompatible with

Table 1 | Summary of types of experimental techniques used in ENCODE

Feature class Experimental
technique(s)

Abbreviations References Number of
experimental
data points

Transcription Tiling array,
integrated
annotation

TxFrag, RxFrag,
GENCODE

117

118

19

119

63,348,656

59 ends of
transcripts*

Tag sequencing PET, CAGE 121

13

864,964

Histone
modifications

Tiling array Histone
nomenclature{,
RFBR

46 4,401,291

Chromatin{
structure

QT-PCR, tiling
array

DHS, FAIRE 42

43

44

122

15,318,324

Sequence-
specific factors

Tiling array, tag
sequencing,
promoter assays

STAGE, ChIP-
Chip, ChIP-PET,
RFBR

41,52

11,120

123

81

34,51

124

49

33

40

324,846,018

Replication Tiling array TR50 59

75

14,735,740

Computational
analysis

Computational
methods

CCI, RFBR cluster 80

125

10

16

126

127

NA

Comparative
sequence
analysis*

Genomic
sequencing, multi-
sequence
alignments,
computational
analyses

CS 87

86

26

NA

Polymorphisms* Resequencing,
copy number
variation

CNV 103

128

NA

* Not all data generated by the ENCODE Project.
{Histone code nomenclature follows the Brno nomenclature as described in ref. 129.
{Also contains histone modification.

Table 2 | Bases detected in processed transcripts either as a GENCODE
exon, a TxFrag, or as either a GENCODE exon or a TxFrag

GENCODE exon TxFrag Either GENCODE exon
or TxFrag

Total detectable
transcripts (bases)

1,776,157 (5.9%) 1,369,611 (4.6%) 2,519,280 (8.4%)

Transcripts detected
in tiled regions of
arrays (bases)

1,447,192 (9.8%) 1,369,611 (9.3%) 2,163,303 (14.7%)

Percentages are of total bases in ENCODE in the first row and bases tiled in arrays in the second
row.
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protein structure18. Such exons are on average less expressed (25%
versus 87% by RT–PCR; see Supplementary Information section 2.7)
than exons involved in more than one transcript (see Supple-
mentary Information section 2.4.3), but when expressed have a tissue
distribution comparable to well-established genes.

Critical questions are raised by the presence of a large amount of
unannotated transcription with respect to how the corresponding
sequences are organized in the genome—do these reflect longer tran-
scripts that include known loci, do they link known loci, or are they
completely separate from known loci? We further investigated these
issues using both computational and new experimental techniques.
Unannotated transcription. Consistent with previous findings, the
Un.TxFrags did not show evidence of encoding proteins (see Sup-
plementary Information section 2.8). One might expect Un.TxFrags
to be linked within transcripts that exhibit coordinated expression
and have similar conservation profiles across species. To test this, we
clustered Un.TxFrags using two methods. The first method19 used
expression levels in 11 cell lines or conditions, dinucleotide composi-
tion, location relative to annotated genes, and evolutionary conser-
vation profiles to cluster TxFrags (both unannotated and annotated).
By this method, 14% of Un.TxFrags could be assigned to annotated
loci, and 21% could be clustered into 200 novel loci (with an average
of ,7 TxFrags per locus). We experimentally examined these novel
loci to study the connectivity of transcripts amongst Un.TxFrags and
between Un.TxFrags and known exons. Overall, about 40% of the
connections (18 out of 46) were validated by RT–PCR. The second
clustering method involved analysing a time course (0, 2, 8 and 32 h)
of expression changes in human HL60 cells following retinoic-acid
stimulation. There is a coordinated program of expression changes
from annotated loci, which can be shown by plotting Pearson
correlation values of the expression levels of exons inside annotated
loci versus unrelated exons (see Supplementary Information sec-
tion 2.8.2). Similarly, there is coordinated expression of nearby
Un.TxFrags, albeit lower, though still significantly different from
randomized sets. Both clustering methods indicate that there is coor-
dinated behaviour of many Un.TxFrags, consistent with them res-
iding in connected transcripts.
Transcript connectivity. We used a combination of RACE and tiling
arrays20 to investigate the diversity of transcripts emanating from
protein-coding loci. Analogous to TxFrags, we refer to transcripts

detected using RACE followed by hybridization to tiling arrays as
RxFrags. We performed RACE to examine 399 protein-coding loci
(those loci found entirely in ENCODE regions) using RNA derived
from 12 tissues, and were able to unambiguously detect 4,573
RxFrags for 359 loci (see Supplementary Information section 2.9).
Almost half of these RxFrags (2,324) do not overlap a GENCODE
exon, and most (90%) loci have at least one novel RxFrag, which
often extends a considerable distance beyond the 59 end of the locus.
Figure 2 shows the distribution of distances between these new
RACE-detected ends and the previously annotated TSS of each locus.
The average distance of the extensions is between 50 kb and 100 kb,
with many extensions (.20%) being more than 200 kb. Consistent
with the known presence of overlapping genes in the human genome,
our findings reveal evidence for an overlapping gene at 224 loci, with
transcripts from 180 of these loci (,50% of the RACE-positive loci)
appearing to have incorporated at least one exon from an upstream
gene.

To characterize further the 59 RxFrag extensions, we performed
RT–PCR followed by cloning and sequencing for 550 of the 59

RxFrags (including the 261 longest extensions identified for each
locus). The approach of mapping RACE products using microarrays
is a combination method previously described and validated in sev-
eral studies14,17,20. Hybridization of the RT–PCR products to tiling
arrays confirmed connectivity in almost 60% of the cases. Sequenced
clones confirmed transcript extensions. Longer extensions were
harder to clone and sequence, but 5 out of 18 RT–PCR-positive
extensions over 100 kb were verified by sequencing (see Supple-
mentary Information section 2.9.7 and ref. 17). The detection of
numerous RxFrag extensions coupled with evidence of considerable
intronic transcription indicates that protein-coding loci are more
transcriptionally complex than previously thought. Instead of the
traditional view that many genes have one or more alternative tran-
scripts that code for alternative proteins, our data suggest that a given
gene may both encode multiple protein products and produce other
transcripts that include sequences from both strands and from neigh-
bouring loci (often without encoding a different protein). Figure 3
illustrates such a case, in which a new fusion transcript is expressed in
the small intestine, and consists of at least three coding exons from
the ATP5O gene and at least two coding exons from the DONSON
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Figure 1 | Annotated and unannotated TxFrags detected in different cell
lines. The proportion of different types of transcripts detected in the
indicated number of cell lines (from 1/11 at the far left to 11/11 at the far
right) is shown. The data for annotated and unannotated TxFrags are
indicated separately, and also split into different categories based on
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indicates the per cent of tiling array nucleotides present in that class for that
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gene, with no evidence of sequences from two intervening protein-
coding genes (ITSN1 and CRYZL1).
Pseudogenes. Pseudogenes, reviewed in refs 21 and 22, are generally
considered non-functional copies of genes, are sometimes tran-
scribed and often complicate analysis of transcription owing to close
sequence similarity to functional genes. We used various computa-
tional methods to identify 201 pseudogenes (124 processed and 77
non-processed) in the ENCODE regions (see Supplementary Infor-
mation section 2.10 and ref. 23). Tiling-array analysis of 189 of these
revealed that 56% overlapped at least one TxFrag. However, possible
cross-hybridization between the pseudogenes and their correspond-
ing parent genes may have confounded such analyses. To assess better
the extent of pseudogene transcription, 160 pseudogenes (111 pro-
cessed and 49 non-processed) were examined for expression using
RACE/tiling-array analysis (see Supplementary Information section
2.9.2). Transcripts were detected for 14 pseudogenes (8 processed
and 6 non-processed) in at least one of the 12 tested RNA sources,
the majority (9) being in testis (see ref. 23). Additionally, there was
evidence for the transcription of 25 pseudogenes on the basis of their
proximity (within 100 bp of a pseudogene end) to CAGE tags (8),
PETs (2), or cDNAs/ESTs (21). Overall, we estimate that at least 19%
of the pseudogenes in the ENCODE regions are transcribed, which is
consistent with previous estimates24,25.
Non-protein-coding RNA. Non-protein-coding RNAs (ncRNAs)
include structural RNAs (for example, transfer RNAs, ribosomal
RNAs, and small nuclear RNAs) and more recently discovered
regulatory RNAs (for example, miRNAs). There are only 8 well-
characterized ncRNA genes within the ENCODE regions (U70,
ACA36, ACA56, mir-192, mir-194-2, mir-196, mir-483 and H19),
whereas representatives of other classes, (for example, box C/D
snoRNAs, tRNAs, and functional snRNAs) seem to be completely
absent in the ENCODE regions. Tiling-array data provided evidence
for transcription in at least one of the assayed RNA samples for all of
these ncRNAs, with the exception of mir-483 (expression of mir-483
might be specific to fetal liver, which was not tested). There is also
evidence for the transcription of 6 out of 8 pseudogenes of ncRNAs
(mainly snoRNA-derived). Similar to the analysis of protein-
pseudogenes, the hybridization results could also originate from
the known snoRNA gene elsewhere in the genome.

Many known ncRNAs are characterized by a well-defined RNA
secondary structure. We applied two de novo ncRNA prediction
algorithms—EvoFold and RNAz—to predict structured ncRNAs
(as well as functional structures in mRNAs) using the multi-species
sequence alignments (see below, Supplementary Information section
2.11 and ref. 26). Using a sensitivity threshold capable of detecting all
known miRNAs and snoRNAs, we identified 4,986 and 3,707 can-
didate ncRNA loci with EvoFold and RNAz, respectively. Only 268
loci (5% and 7%, respectively) were found with both programs,
representing a 1.6-fold enrichment over that expected by chance;
the lack of more extensive overlap is due to the two programs having
optimal sensitivity at different levels of GC content and conservation.
We experimentally examined 50 of these targets using RACE/
tiling-array analysis for brain and testis tissues (see Supplementary

Information sections 2.11 and 2.9.3); the predictions were validated
at a 56%, 65%, and 63% rate for Evofold, RNAz and dual predictions,
respectively.
Primary transcripts. The detection of numerous unannotated
transcripts coupled with increasing knowledge of the general com-
plexity of transcription prompted us to examine the extent of prim-
ary (that is, unspliced) transcripts across the ENCODE regions.
Three data sources provide insight about these primary transcripts:
the GENCODE annotation, PETs, and RxFrag extensions. Figure 4
summarizes the fraction of bases in the ENCODE regions that over-
lap transcripts identified by these technologies. Remarkably, 93% of
bases are represented in a primary transcript identified by at least two
independent observations (but potentially using the same techno-
logy); this figure is reduced to 74% in the case of primary transcripts
detected by at least two different technologies. These increased spans
are not mainly due to cell line rearrangements because they were
present in multiple tissue experiments that confirmed the spans
(see Supplementary Information section 2.12). These estimates
assume that the presence of PETs or RxFrags defining the terminal
ends of a transcript imply that the entire intervening DNA is tran-
scribed and then processed. Other mechanisms, thought to be
unlikely in the human genome, such as trans-splicing or polymerase
jumping would also produce these long termini and potentially
should be reconsidered in more detail.

Previous studies have suggested a similar broad amount of tran-
scription across the human14,15 and mouse27 genomes. Our studies
confirm these results, and have investigated the genesis of these
transcripts in greater detail, confirming the presence of substantial
intragenic and intergenic transcription. At the same time, many of
the resulting transcripts are neither traditional protein-coding

No coverage

One technology,
one observation 

One technology,
two observations

Two
technologies

All three
technologies

Figure 4 | Coverage of primary transcripts across ENCODE regions. Three
different technologies (integrated annotation from GENCODE, RACE-array
experiments (RxFrags) and PET tags) were used to assess the presence of a
nucleotide in a primary transcript. Use of these technologies provided the
opportunity to have multiple observations of each finding. The proportion
of genomic bases detected in the ENCODE regions associated with each of
the following scenarios is depicted: detected by all three technologies, by two
of the three technologies, by one technology but with multiple observations,
and by one technology with only one observation. Also indicated are
genomic bases without any detectable coverage of primary transcripts.
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Figure 3 | Overview of RACE experiments showing a gene fusion.
Transcripts emanating from the region between the DONSON and ATP5O
genes. A 330-kb interval of human chromosome 21 (within ENm005) is shown,
which contains four annotated genes: DONSON, CRYZL1, ITSN1 and ATP5O.
The 59 RACE products generated from small intestine RNA and detected by

tiling-array analyses (RxFrags) are shown along the top. Along the bottom is
shown the placement of a cloned and sequenced RT–PCR product that has two
exons from the DONSON gene followed by three exons from the ATP5O gene;
these sequences are separated by a 300 kb intron in the genome. A PET tag
shows the termini of a transcript consistent with this RT–PCR product.
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transcripts nor easily explained as structural non-coding RNAs.
Other studies have noted complex transcription around specific loci
or chimaeric-gene structures (for example refs 28–30), but these have
often been considered exceptions; our data show that complex inter-
calated transcription is common at many loci. The results presented
in the next section show extensive amounts of regulatory factors
around novel TSSs, which is consistent with this extensive transcrip-
tion. The biological relevance of these unannotated transcripts
remains unanswered by these studies. Evolutionary information
(detailed below) is mixed in this regard; for example, it indicates that
unannotated transcripts show weaker evolutionary conservation
than many other annotated features. As with other ENCODE-
detected elements, it is difficult to identify clear biological roles for
the majority of these transcripts; such experiments are challenging to
perform on a large scale and, furthermore, it seems likely that many
of the corresponding biochemical events may be evolutionarily neut-
ral (see below).

Regulation of transcription
Overview. A significant challenge in biology is to identify the tran-
scriptional regulatory elements that control the expression of each
transcript and to understand how the function of these elements is
coordinated to execute complex cellular processes. A simple, com-
monplace view of transcriptional regulation involves five types of
cis-acting regulatory sequences—promoters, enhancers, silencers,
insulators and locus control regions31. Overall, transcriptional regu-
lation involves the interplay of multiple components, whereby the
availability of specific transcription factors and the accessibility of
specific genomic regions determine whether a transcript is gener-
ated31. However, the current view of transcriptional regulation is
known to be overly simplified, with many details remaining to be
established. For example, the consensus sequences of transcription
factor binding sites (typically 6 to 10 bases) have relatively little
information content and are present numerous times in the genome,
with the great majority of these not participating in transcriptional
regulation. Does chromatin structure then determine whether such a
sequence has a regulatory role? Are there complex inter-factor inter-
actions that integrate the signals from multiple sites? How are signals
from different distal regulatory elements coupled without affecting all
neighbouring genes? Meanwhile, our understanding of the repertoire
of transcriptional events is becoming more complex, with an increas-
ing appreciation of alternative TSSs32,33 and the presence of non-
coding27,34 and anti-sense transcripts35,36.

To better understand transcriptional regulation, we sought to
begin cataloguing the regulatory elements residing within the 44
ENCODE regions. For this pilot project, we mainly focused on the
binding of regulatory proteins and chromatin structure involved in
transcriptional regulation. We analysed over 150 data sets, mainly
from ChIP-chip37–39, ChIP-PET and STAGE40,41 studies (see Sup-
plementary Information section 3.1 and 3.2). These methods use
chromatin immunoprecipitation with specific antibodies to enrich
for DNA in physical contact with the targeted epitope. This enriched
DNA can then be analysed using either microarrays (ChIP-chip) or
high-throughput sequencing (ChIP-PET and STAGE). The assays
included 18 sequence-specific transcription factors and components
of the general transcription machinery (for example, RNA polymer-
ase II (Pol II), TAF1 and TFIIB/GTF2B). In addition, we tested more
than 600 potential promoter fragments for transcriptional activity by
transient-transfection reporter assays that used 16 human cell lines33.
We also examined chromatin structure by studying the ENCODE
regions for DNaseI sensitivity (by quantitative PCR42 and tiling
arrays43,44, see Supplementary Information section 3.3), histone com-
position45, histone modifications (using ChIP-chip assays)37,46, and
histone displacement (using FAIRE, see Supplementary Information
section 3.4). Below, we detail these analyses, starting with the efforts
to define and classify the 59 ends of transcripts with respect to their
associated regulatory signals. Following that are summaries of

generated data about sequence-specific transcription factor binding
and clusters of regulatory elements. Finally, we describe how this
information can be integrated to make predictions about transcrip-
tional regulation.
Transcription start site catalogue. We analysed two data sets
to catalogue TSSs in the ENCODE regions: the 59 ends of
GENCODE-annotated transcripts and the combined results of two
59-end-capture technologies—CAGE and PET-tagging. The initial
results suggested the potential presence of 16,051 unique TSSs.
However, in many cases, multiple TSSs resided within a single small
segment (up to ,200 bases); this was due to some promoters con-
taining TSSs with many very close precise initiation sites47. To nor-
malize for this effect, we grouped TSSs that were 60 or fewer bases
apart into a single cluster, and in each case considered the most
frequent CAGE or PET tag (or the 59-most TSS in the case of TSSs
identified only from GENCODE data) as representative of that clus-
ter for downstream analyses.

The above effort yielded 7,157 TSS clusters in the ENCODE
regions. We classified these TSSs into three categories: known (pre-
sent at the end of GENCODE-defined transcripts), novel (supported
by other evidence) and unsupported. The novel TSSs were further
subdivided on the basis of the nature of the supporting evidence (see
Table 3 and Supplementary Information section 3.5), with all four of
the resulting subtypes showing significant overlap with experimental
evidence using the GSC statistic. Although there is a larger relative
proportion of singleton tags in the novel category, when analysis is
restricted to only singleton tags, the novel TSSs continue to have
highly significant overlap with supporting evidence (see Supplemen-
tary Information section 3.5.1).
Correlating genomic features with chromatin structure and tran-
scription factor binding. By measuring relative sensitivity to DNaseI
digestion (see Supplementary Information section 3.3), we identified
DNaseI hypersensitive sites throughout the ENCODE regions. DHSs
and TSSs both reflect genomic regions thought to be enriched for
regulatory information and many DHSs reside at or near TSSs. We
partitioned DHSs into those within 2.5 kb of a TSS (958; 46.5%) and
the remaining ones, which were classified as distal (1,102; 53.5%). We
then cross-analysed the TSSs and DHSs with data sets relating to
histone modifications, chromatin accessibility and sequence-specific
transcription factor binding by summarizing these signals in aggreg-
ate relative to the distance from TSSs or DHSs. Figure 5 shows rep-
resentative profiles of specific histone modifications, Pol II and
selected transcription factor binding for the different categories of
TSSs. Further profiles and statistical analysis of these studies can be
found in Supplementary Information 3.6.

In the case of the three TSS categories (known, novel and unsup-
ported), known and novel TSSs are both associated with similar
signals for multiple factors (ranging from histone modifications
through DNaseI accessibility), whereas unsupported TSSs are not.

Table 3 | Different categories of TSSs defined on the basis of support from
different transcript-survey methods

Category Transcript survey
method

Number of TSS
clusters
(non-redundant)*

P value{ Singleton
clusters{ (%)

Known GENCODE 59 ends 1,730 2 3 10
270

25 (74 overall)
Novel GENCODE sense

exons
1,437 6 3 10

239

64

GENCODE
antisense exons

521 3 3 10
28

65

Unbiased
transcription survey

639 7 3 10
263

71

CpG island 164 4 3 10
290

60

Unsupported None 2,666 - 83.4

* Number of TSS clusters with this support, excluding TSSs from higher categories.
{ Probability of overlap between the transcript support and the PET/CAGE tags, as calculated by
the Genome Structure Correction statistic (see Supplementary Information section 1.3).
{ Per cent of clusters with only one tag. For the ‘known’ category this was calculated as the per
cent of GENCODE 59 ends with tag support (25%) or overall (74%).
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The enrichments seen with chromatin modifications and sequence-
specific factors, along with the significant clustering of this evidence,
indicate that the novel TSSs do not reflect false positives and probably
use the same biological machinery as other promoters. Sequence-
specific transcription factors show a marked increase in binding
across the broad region that encompasses each TSS. This increase
is notably symmetric, with binding equally likely upstream or
downstream of a TSS (see Supplementary Information section 3.7
for an explanation of why this symmetrical signal is not an artefact
of the analysis of the signals). Furthermore, there is enrichment
of SMARCC1 binding (a member of the SWI/SNF chromatin-
modifying complex), which persists across a broader extent than
other factors. The broad signals with this factor indicate that the
ChIP-chip results reflect both specific enrichment at the TSS and
broader enrichments across ,5-kb regions (this is not due to tech-
nical issues, see Supplementary Information section 3.8).

We selected 577 GENCODE-defined TSSs at the 59 ends of a pro-
tein-coding transcript with over 3 exons, to assess expression status.
Each transcript was classified as: (1) ‘active’ (gene on) or ‘inactive’
(gene off) on the basis of the unbiased transcript surveys, and (2)
residing near a ‘CpG island’ or not (‘non-CpG island’) (see Sup-
plementary Information section 3.17). As expected, the aggregate

signal of histone modifications is mainly attributable to active TSSs
(Fig. 5), in particular those near CpG islands. Pronounced doublet
peaks at the TSS can be seen with these large signals (similar to
previous work in yeast48) owing to the chromatin accessibility at
the TSS. Many of the histone marks and Pol II signals are now clearly
asymmetrical, with a persistent level of Pol II into the genic region, as
expected. However, the sequence-specific factors remain largely sym-
metrically distributed. TSSs near CpG islands show a broader distri-
bution of histone marks than those not near CpG islands (see
Supplementary Information section 3.6). The binding of some tran-
scription factors (E2F1, E2F4 and MYC) is extensive in the case of
active genes, and is lower (or absent) in the case of inactive genes.
Chromatin signature of distal elements. Distal DHSs show char-
acteristic patterns of histone modification that are the inverse of
TSSs, with high H3K4me1 accompanied by lower levels of
H3K4Me3 and H3Ac (Fig. 5). Many factors with high occupancy at
TSSs (for example, E2F4) show little enrichment at distal DHSs,
whereas other factors (for example, MYC) are enriched at both
TSSs and distal DHSs49. A particularly interesting observation is
the relative enrichment of the insulator-associated factor CTCF50 at
both distal DHSs and TSSs; this contrasts with SWI/SNF components
SMARCC2 and SMARCC1, which are TSS-centric. Such differential
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Figure 5 | Aggregate signals of tiling-array experiments from either ChIP-
chip or chromatin structure assays, represented for different classes of
TSSs and DHS. For each plot, the signal was first normalized with a mean of
0 and standard deviation of 1, and then the normalized scores were summed
at each position for that class of TSS or DHS and smoothed using a kernel
density method (see Supplementary Information section 3.6). For each class
of sites there are two adjacent plots. The left plot depicts the data for general

factors: FAIRE and DNaseI sensitivity as assays of chromatin accessibility
and H3K4me1, H3K4me2, H3K4me3, H3ac and H4ac histone modifications
(as indicated); the right plot shows the data for additional factors, namely
MYC, E2F1, E2F4, CTCF, SMARCC1 and Pol II. The columns provide data
for the different classes of TSS or DHS (unsmoothed data and statistical
analysis shown in Supplementary Information section 3.6).
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behaviour of sequence-specific factors points to distinct biological
differences, mediated by transcription factors, between distal regula-
tory sites and TSSs.
Unbiased maps of sequence-specific regulatory factor binding.
The previous section focused on specific positions defined by TSSs
or DHSs. We then analysed sequence-specific transcription factor
binding data in an unbiased fashion. We refer to regions with
enriched binding of regulatory factors as RFBRs. RFBRs were iden-
tified on the basis of ChIP-chip data in two ways: first, each invest-
igator developed and used their own analysis method(s) to define
high-enrichment regions, and second (and independently), a strin-
gent false discovery rate (FDR) method was applied to analyse all
data using three cut-offs (1%, 5% and 10%). The laboratory-specific
and FDR-based methods were highly correlated, particularly for
regions with strong signals10,11. For consistency, we used the results
obtained with the FDR-based method (see Supplementary Infor-
mation section 3.10). These RFBRs can be used to find sequence
motifs (see Supplementary Information section S3.11).
RFBRs are associated with the 59 ends of transcripts. The distri-
bution of RFBRs is non-random (see ref. 10) and correlates with the
positions of TSSs. We examined the distribution of specific RFBRs
relative to the known TSSs. Different transcription factors and his-
tone modifications vary with respect to their association with TSSs
(Fig. 6; see Supplementary Information section 3.12 for modelling of
random expectation). Factors for which binding sites are most
enriched at the 59 ends of genes include histone modifications,
TAF1 and RNA Pol II with a hypo-phosphorylated carboxy-terminal
domain51—confirming previous expectations. Surprisingly, we found
that E2F1, a sequence-specific factor that regulates the expression of
many genes at the G1 to S transition52, is also tightly associated with
TSSs52; this association is as strong as that of TAF1, the well-known
TATA box-binding protein associated factor 1 (ref. 53). These results
suggest that E2F1 has a more general role in transcription than prev-
iously suspected, similar to that for MYC54–56. In contrast, the large-
scale assays did not support the promoter binding that was found in
smaller-scale studies (for example, on SIRT1 and SPI1 (PU1)).
Integration of data on sequence-specific factors. We expect that
regulatory information is not dispersed independently across the
genome, but rather is clustered into distinct regions57. We refer to
regions that contain multiple regulatory elements as ‘regulatory clus-
ters’. We sought to predict the location of regulatory clusters by

cross-integrating data generated using all transcription factor and
histone modification assays, including results falling below an arbit-
rary threshold in individual experiments. Specifically, we used four
complementary methods to integrate the data from 129 ChIP-chip
data sets (see Supplementary Information section 3.13 and ref. 58.
These four methods detect different classes of regulatory clusters and
as a whole identified 1,393 clusters. Of these, 344 were identified by all
four methods, with another 500 found by three methods (see
Supplementary Information section 3.13.5). 67% of the 344 regula-
tory clusters identified by all four methods (or 65% of the full set of
1,393) reside within 2.5 kb of a known or novel TSS (as defined above;
see Table 3 and Supplementary Information section 3.14 for a break-
down by category). Restricting this analysis to previously annotated
TSSs (for example, RefSeq or Ensembl) reveals that roughly 25% of
the regulatory clusters are close to a previously identified TSS. These
results suggest that many of the regulatory clusters identified by
integrating the ChIP-chip data sets are undiscovered promoters or
are somehow associated with transcription in another fashion. To
test these possibilities, sets of 126 and 28 non-GENCODE-based
regulatory clusters were tested for promoter activity (see Supple-
mentary Information section 3.15) and by RACE, respectively.
These studies revealed that 24.6% of the 126 tested regulatory clusters
had promoter activity and that 78.6% of the 28 regulatory clusters
analysed by RACE yielded products consistent with a TSS58. The
ChIP-chip data sets were generated on a mixture of cell lines, pre-
dominantly HeLa and GM06990, and were different from the CAGE/
PET data, meaning that tissue specificity contributes to the presence
of unique TSSs and regulatory clusters. The large increase in pro-
moter proximal regulatory clusters identified by including the addi-
tional novel TSSs coupled with the positive promoter and RACE
assays suggests that most of the regulatory regions identifiable by
these clustering methods represent bona fide promoters (see
Supplementary Information 3.16). Although the regulatory factor
assays were more biased towards regions associated with promoters,
many of the sites from these experiments would have previously
been described as distal to promoters. This suggests that common-
place use of RefSeq- or Ensembl-based gene definition to define
promoter proximity will dramatically overestimate the number of
distal sites.
Predicting TSSs and transcriptional activity on the basis of chro-
matin structure. The strong association between TSSs and both his-
tone modifications and DHSs prompted us to investigate whether the
location and activity of TSSs could be predicted solely on the basis
of chromatin structure information. We trained a support vector
machine (SVM) by using histone modification data anchored around
DHSs to discriminate between DHSs near TSSs and those distant from
TSSs. We used a selected 2,573 DHSs, split roughly between TSS-
proximal DHSs and TSS-distal DHSs, as a training set. The SVM
performed well, with an accuracy of 83% (see Supplementary
Information section 3.17). Using this SVM, we then predicted new
TSSs using information about DHSs and histone modifications—of
110 high-scoring predicted TSSs, 81 resided within 2.5 kb of a novel
TSS. As expected, these show a significant overlap to the novel TSS
groups (defined above) but without a strong bias towards any par-
ticular category (see Supplementary Information section 3.17.1.5).

To investigate the relationship between chromatin structure and
gene expression, we examined transcript levels in two cell lines using
a transcript-tiling array. We compared this transcript data with the
results of ChIP-chip experiments that measured histone modifica-
tions across the ENCODE regions. From this, we developed a variety
of predictors of expression status using chromatin modifications as
variables; these were derived using both decision trees and SVMs (see
Supplementary Information section 3.17). The best of these correctly
predicts expression status (transcribed versus non-transcribed) in
91% of cases. This success rate did not decrease dramatically when
the predicting algorithm incorporated the results from one cell line to
predict the expression status of another cell line. Interestingly, despite
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the striking difference in histone modification enrichments in TSSs
residing near versus those more distal to CpG islands (see Fig. 5 and
Supplementary Information section 3.6), including information
about the proximity to CpG islands did not improve the predictors.
This suggests that despite the marked differences in histone modifi-
cations among these TSS classes, a single predictor can be made,
using the interactions between the different histone modification
levels.

In summary, we have integrated many data sets to provide a more
complete view of regulatory information, both around specific sites
(TSSs and DHSs) and in an unbiased manner. From analysing mul-
tiple data sets, we find 4,491 known and novel TSSs in the ENCODE
regions, almost tenfold more than the number of established genes.
This large number of TSSs might explain the extensive transcription
described above; it also begins to change our perspective about reg-
ulatory information—without such a large TSS catalogue, many of
the regulatory clusters would have been classified as residing distal to
promoters. In addition to this revelation about the abundance of
promoter-proximal regulatory elements, we also identified a consid-
erable number of putative distal regulatory elements, particularly on
the basis of the presence of DHSs. Our study of distal regulatory
elements was probably most hindered by the paucity of data gener-
ated using distal-element-associated transcription factors; neverthe-
less, we clearly detected a set of distal-DHS-associated segments
bound by CTCF or MYC. Finally, we showed that information about
chromatin structure alone could be used to make effective predic-
tions about both the location and activity of TSSs.

Replication
Overview. DNA replication must be carefully coordinated, both
across the genome and with respect to development. On a larger scale,
early replication in S phase is broadly correlated with gene density
and transcriptional activity59–66; however, this relationship is not
universal, as some actively transcribed genes replicate late and vice
versa61,64–68. Importantly, the relationship between transcription and
DNA replication emerges only when the signal of transcription is
averaged over a large window (.100 kb)63, suggesting that larger-
scale chromosomal architecture may be more important than the
activity of specific genes69.

The ENCODE Project provided a unique opportunity to examine
whether individual histone modifications on human chromatin can
be correlated with the time of replication and whether such correla-
tions support the general relationship of active, open chromatin with
early replication. Our studies also tested whether segments showing
interallelic variation in the time of replication have two different
types of histone modifications consistent with an interallelic vari-
ation in chromatin state.
DNA replication data set. We mapped replication timing across the
ENCODE regions by analysing Brd-U-labelled fractions from syn-
chronized HeLa cells (collected at 2 h intervals throughout S phase)
on tiling arrays (see Supplementary Information section 4.1).
Although the HeLa cell line has a considerably altered karyotype,
correlation of these data with other cell line data (see below) suggests
the results are relevant to other cell types. The results are expressed as
the time at which 50% of any given genomic position is replicated
(TR50), with higher values signifying later replication times. In addi-
tion to the five ‘activating’ histone marks, we also correlated the TR50
with H3K27me3, a modification associated with polycomb-mediated
transcriptional repression70–74. To provide a consistent comparison
framework, the histone data were smoothed to 100-kb resolution,
and then correlated with the TR50 data by a sliding window correla-
tion analysis (see Supplementary Information section 4.2). The
continuous profiles of the activating marks, histone H3K4 mono-,
di-, and tri-methylation and histone H3 and H4 acetylation, are
generally anti-correlated with the TR50 signal (Fig. 7a and Sup-
plementary Information section 4.3). In contrast, H3K27me3 marks
show a predominantly positive correlation with late-replicating seg-
ments (Fig. 7a; see Supplementary Information section 4.3 for addi-
tional analysis).

Although most genomic regions replicate in a temporally specific
window in S phase, other regions demonstrate an atypical pattern of
replication (Pan-S) where replication signals are seen in multiple
parts of S phase. We have suggested that such a pattern of replication
stems from interallelic variation in the chromatin structure59,75. If one
allele is in active chromatin and the other in repressed chromatin,
both types of modified histones are expected to be enriched in the
Pan-S segments. An ENCODE region was classified as non-specific
(or Pan-S) regions when .60% of the probes in a 10-kb window
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Figure 7 | Correlation between replication timing and histone
modifications. a, Comparison of two histone modifications (H3K4me2 and
H3K27me3), plotted as enrichment ratio from the Chip-chip experiments
and the time for 50% of the DNA to replicate (TR50), indicated for ENCODE
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replicated in multiple intervals in S phase. The remaining regions
were sub-classified into early-, mid- or late-replicating based on the
average TR50 of the temporally specific probes within a 10-kb win-
dow75. For regions of each class of replication timing, we determined
the relative enrichment of various histone modification peaks in
HeLa cells (Fig. 7b; Supplementary Information section 4.4). The
correlations of activating and repressing histone modification peaks
with TR50 are confirmed by this analysis (Fig. 7b). Intriguingly, the
Pan-S segments are unique in being enriched for both activating
(H3K4me2, H3ac and H4ac) and repressing (H3K27me3) histones,
consistent with the suggestion that the Pan-S replication pattern
arises from interallelic variation in chromatin structure and time of
replication75. This observation is also consistent with the Pan-S rep-
lication pattern seen for the H19/IGF2 locus, a known imprinted
region with differential epigenetic modifications across the two
alleles76.

The extensive rearrangements in the genome of HeLa cells led us to
ask whether the detected correlations between TR50 and chromatin
state are seen with other cell lines. The histone modification data with
GM06990 cells allowed us to test whether the time of replication of
genomic segments in HeLa cells correlated with the chromatin state
in GM06990 cells. Early- and late-replicating segments in HeLa cells
are enriched and depleted, respectively, for activating marks in
GM06990 cells (Fig. 7b). Thus, despite the presence of genomic rear-
rangements (see Supplementary Information section 2.12), the TR50
and chromatin state in HeLa cells are not far from a constitutive
baseline also seen with a cell line from a different lineage. The enrich-
ment of multiple activating histone modifications and the depletion
of a repressive modification from segments that replicate early in S
phase extends previous work in the field at a level of detail and scale
not attempted before in mammalian cells. The duality of histone
modification patterns in Pan-S areas of the HeLa genome, and the
concordance of chromatin marks and replication time across two
disparate cell lines (HeLa and GM06990) confirm the coordination
of histone modifications with replication in the human genome.

Chromatin architecture and genomic domains
Overview. The packaging of genomic DNA into chromatin is inti-
mately connected with the control of gene expression and other
chromosomal processes. We next examined chromatin structure
over a larger scale to ascertain its relation to transcription and other
processes. Large domains (50 to .200 kb) of generalized DNaseI
sensitivity have been detected around developmentally regulated
gene clusters77, prompting speculation that the genome is organized

into ‘open’ and ‘closed’ chromatin territories that represent higher-
order functional domains. We explored how different chromatin
features, particularly histone modifications, correlate with chro-
matin structure, both over short and long distances.
Chromatin accessibility and histone modifications. We used his-
tone modification studies and DNaseI sensitivity data sets (intro-
duced above) to examine general chromatin accessibility without
focusing on the specific DHS sites (see Supplementary Informa-
tion sections 3.1, 3.3 and 3.4). A fundamental difficulty in analysing
continuous data across large genomic regions is determining the
appropriate scale for analysis (for example, 2 kb, 5 kb, 20 kb, and so
on). To address this problem, we developed an approach based on
wavelet analysis, a mathematical tool pioneered in the field of signal
processing that has recently been applied to continuous-value geno-
mic analyses. Wavelet analysis provides a means for consistently
transforming continuous signals into different scales, enabling the
correlation of different phenomena independently at differing scales
in a consistent manner.
Global correlations of chromatin accessibility and histone modi-
fications. We computed the regional correlation between DNaseI
sensitivity and each histone modification at multiple scales using a
wavelet approach (Fig. 8 and Supplementary Information section
4.2). To make quantitative comparisons between different histone
modifications, we computed histograms of correlation values be-
tween DNaseI sensitivity and each histone modification at several
scales and then tested these for significance at specific scales. Figure
8c shows the distribution of correlation values at a 16-kb scale, which
is considerably larger than individual cis-acting regulatory elements.
At this scale, H3K4me2, H3K4me3 and H3ac show similarly high
correlation. However, they are significantly distinguished from
H3K4me1 and H4ac modifications (P , 1.5 3 10233; see Supple-
mentary Information section 4.5), which show lower correlation with
DNaseI sensitivity. These results suggest that larger-scale relation-
ships between chromatin accessibility and histone modifications
are dominated by sub-regions in which higher average DNaseI sens-
itivity is accompanied by high levels of H3K4me2, H3K4me3 and
H3ac modifications.
Local correlations of chromatin accessibility and histone modifi-
cations. Narrowing to a scale of ,2 kb revealed a more complex
situation, in which H3K4me2 is the histone modification that is
best correlated with DNaseI sensitivity. However, there is no clear
combination of marks that correlate with DNaseI sensitivity in a
way that is analogous to that seen at a larger scale (see Supplemen-
tary Information section 4.3). One explanation for the increased

1.11 Mb
(ENm013)

25

15

16
8
4
2

0

0
4
8

H3k4me2

DNaseI sensitivity

89,600 89,800 90,000 90,200 90,400

H3k4me2 : DNaseI correlation by scale

Genomic position (kb)

Genomic position (kb)PositiveNegative
Correlation

a c

b

S
ig

na
l/c

on
tr

ol
S

ca
le

 (k
b

)

H3k4me2
H3k4me3

H3Ac

H3k4me1

H4Ac

0 0.5 1.0–0.5–1.0

Correlation value

D
en

si
ty

16-kb scale1.2

1.0

0.8

0.6

0.4

0.2

0

Figure 8 | Wavelet correlations of histone marks and DNaseI sensitivity.
As an example, correlations between DNaseI sensitivity and H3K4me2 (both
in the GM06990 cell line) over a 1.1-Mb region on chromosome 7 (ENCODE
region ENm013) are shown. a, The relationship between histone
modification H3K4me2 (upper plot) and DNaseI sensitivity (lower plot) is
shown for ENCODE region ENm013. The curves are coloured with the
strength of the local correlation at the 4-kb scale (top dashed line in panel
b). b, The same data as in a are represented as a wavelet correlation. The

y axis shows the differing scales decomposed by the wavelet analysis from
large to small scale (in kb); the colour at each point in the heatmap represents
the level of correlation at the given scale, measured in a 20 kb window
centred at the given position. c, Distribution of correlation values at the
16 kb scale between the indicated histone marks. The y axis is the density of
these correlation values across ENCODE; all modifications show a peak at a
positive-correlation value.

ARTICLES NATURE | Vol 447 | 14 June 2007

808
Nature   ©2007 Publishing Group



complexity at smaller scales is that there is a mixture of different
classes of accessible chromatin regions, each having a different pat-
tern of histone modifications. To examine this, we computed the
degree to which local peaks in histone methylation or acetylation
occur at DHSs (see Supplementary Information section 4.5.1). We
found that 84%, 91% and 93% of significant peaks in H3K4 mono-,
di- and tri-methylation, respectively, and 93% and 81% of significant
peaks in H3ac and H4ac acetylation, respectively, coincided with
DHSs (see Supplementary Information section 4.5). Conversely, a
proportion of DHSs seemed not to be associated with significant
peaks in H3K4 mono-, di- or tri-methylation (37%, 29% and 47%,
respectively), nor with peaks in H3 or H4 acetylation (both 57%).
Because only a limited number of histone modification marks were
assayed, the possibility remains that some DHSs harbour other his-
tone modifications. The absence of a more complete concordance
between DHSs and peaks in histone acetylation is surprising given the
widely accepted notion that histone acetylation has a central role in
mediating chromatin accessibility by disrupting higher-order chro-
matin folding.
DNA structure at DHSs. The observation that distinctive hydroxyl
radical cleavage patterns are associated with specific DNA struc-
tures78 prompted us to investigate whether DHS subclasses differed
with respect to their local DNA structure. Conversely, because dif-
ferent DNA sequences can give rise to similar hydroxyl radical cleav-
age patterns79, genomic regions that adopt a particular local structure
do not necessarily have the same nucleotide sequence. Using a Gibbs
sampling algorithm on hydroxyl radical cleavage patterns of 3,150
DHSs80, we discovered an 8-base segment with a conserved cleavage
signature (CORCS; see Supplementary Information section 4.6). The
underlying DNA sequences that give rise to this pattern have little
primary sequence similarity despite this similar structural pattern.
Furthermore, this structural element is strongly enriched in promoter-
proximal DHSs (11.3-fold enrichment compared to the rest of the
ENCODE regions) relative to promoter-distal DHSs (1.5-fold enrich-
ment); this element is enriched 10.9-fold in CpG islands, but is higher
still (26.4-fold) in CpG islands that overlap a DHS.
Large-scale domains in the ENCODE regions. The presence of
extensive correlations seen between histone modifications, DNaseI

sensitivity, replication, transcript density and protein factor binding
led us to investigate whether all these features are organized system-
atically across the genome. To test this, we performed an unsuper-
vised training of a two-state HMM with inputs from these different
features (see Supplementary Information section 4.7 and ref. 81). No
other information except for the experimental variables was used for
the HMM training routines. We consistently found that one state
(‘active’) generally corresponded to domains with high levels of H3ac
and RNA transcription, low levels of H3K27me3 marks, and early
replication timing, whereas the other state (‘repressed’) reflected
domains with low H3ac and RNA, high H3K27me3, and late replica-
tion (see Fig. 9). In total, we identified 70 active regions spanning
11.4 Mb and 82 inactive regions spanning 17.8 Mb (median size
136 kb versus 104 kb respectively). The active domains are markedly
enriched for GENCODE TSSs, CpG islands and Alu repetitive ele-
ments (P , 0.0001 for each), whereas repressed regions are signifi-
cantly enriched for LINE1 and LTR transposons (P , 0.001). Taken
together, these results demonstrate remarkable concordance between
ENCODE functional data types and provide a view of higher-order
functional domains defined by a broader range of factors at a mark-
edly higher resolution than was previously available82.

Evolutionary constraint and population variability
Overview. Functional genomic sequences can also be identified by
examining evolutionary changes across multiple extant species and
within the human population. Indeed, such studies complement
experimental assays that identify specific functional elements83–85.
Evolutionary constraint (that is, the rejection of mutations at a par-
ticular location) can be measured by either (i) comparing observed
substitutions to neutral rates calculated from multi-sequence
alignments86–88, or (ii) determining the presence and frequency of
intra-species polymorphisms. Importantly, both approaches are
indifferent to any specific function that the constrained sequence
might confer.

Previous studies comparing the human, mouse, rat and dog
genomes examined bulk evolutionary properties of all nucleotides
in the genome, and provided little insight about the precise positions
of constrained bases. Interestingly, these studies indicated that the
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majority of constrained bases reside within the non-coding portion
of the human genome. Meanwhile, increasingly rich data sets of
polymorphisms across the human genome have been used exten-
sively to establish connections between genetic variants and disease,
but far fewer analyses have sought to use such data for assessing
functional constraint85.

The ENCODE Project provides an excellent opportunity for more
fully exploiting inter- and intra-species sequence comparisons to
examine genome function in the context of extensive experimental
studies on the same regions of the genome. We consolidated the
experimentally derived information about the ENCODE regions
and focused our analyses on 11 major classes of genomic elements.
These classes are listed in Table 4 and include two non-experimentally
derived data sets: ancient repeats (ARs; mobile elements that inserted
early in the mammalian lineage, have subsequently become dormant,
and are assumed to be neutrally evolving) and constrained sequences
(CSs; regions that evolve detectably more slowly than neutral
sequences).
Comparative sequence data sets and analysis. We generated 206 Mb
of genomic sequence orthologous to the ENCODE regions from 14
mammalian species using a targeted strategy that involved isolating89

and sequencing90 individual bacterial artificial chromosome clones.
For an additional 14 vertebrate species, we used 340 Mb of ortholo-
gous genomic sequence derived from genome-wide sequencing
efforts3–8,91–93. The orthologous sequences were aligned using three
alignment programs: TBA94, MAVID95 and MLAGAN96. Four inde-
pendent methods that generated highly concordant results97 were
then used to identify sequences under constraint (PhastCons88,
GERP87, SCONE98 and BinCons86). From these analyses, we deve-
loped a high-confidence set of ‘constrained sequences’ that corre-
spond to 4.9% of the nucleotides in the ENCODE regions. The
threshold for determining constraint was set using a FDR rate of
5% (see ref. 97); this level is similar to previous estimates of the
fraction of the human genome under mammalian constraint4,86–88

but the FDR rate was not chosen to fit this result. The median length
of these constrained sequences is 19 bases, with the minimum being
8 bases—roughly the size of a typical transcription factor binding
site. These analyses, therefore, provide a resolution of constrained
sequences that is substantially better than that currently available
using only whole-genome vertebrate sequences99–102.

Intra-species variation studies mainly used SNP data from Phases I
and II, and the 10 re-sequenced regions in ENCODE regions with 48
individuals of the HapMap Project103; nucleotide insertion or dele-
tion (indel) data were from the SNP Consortium and HapMap.We
also examined the ENCODE regions for the presence of overlaps with
known segmental duplications104 and CNVs.
Experimentally identified functional elements and constrained
sequences. We first compared the detected constrained sequences

with the positions of experimentally identified functional elements. A
total of 40% of the constrained bases reside within protein-coding
exons and their associated untranslated regions (Fig. 10) and, in
agreement with previous genome-wide estimates, the remaining
constrained bases do not overlap the mature transcripts of protein-
coding genes4,5,88,105,106. When we included the other experimental
annotations, we found that an additional 20% of the constrained
bases overlap experimentally identified non-coding functional
regions, although far fewer of these regions overlap constrained
sequences compared to coding exons (see below). Most experimental
annotations are significantly different from a random expectation for
both base-pair or element-level overlaps (using the GSC statistic, see
Supplementary Information section 1.3), with a more striking devi-
ation when considering elements (Fig. 11). The exceptions to this are
pseudogenes, Un.TxFrags and RxFrags. The increase in significance
moving from base-pair measures to the element level suggests that
discrete islands of constrained sequence exist within experimentally
identified functional elements, with the surrounding bases appar-
ently not showing evolutionary constraint. This notion is discussed
in greater detail in ref. 97.

We also examined measures of human variation (heterozygosity,
derived allele-frequency spectra and indel rates) within the sequences
of the experimentally identified functional elements (Fig. 12). For
these studies, ARs were used as a marker for neutrally evolving
sequence. Most experimentally identified functional elements are
associated with lower heterozygosity compared to ARs, and a few
have lower indel rates compared with ARs. Striking outliers are
39 UTRs, which have dramatically increased indel rates without an
obvious cause. This is discussed in more depth in ref. 107.

These findings indicate that the majority of the evolutionarily
constrained, experimentally identified functional elements show
evidence of negative selection both across mammalian species and
within the human population. Furthermore, we have assigned at least
one molecular function to the majority (60%) of all constrained bases
in the ENCODE regions.
Conservation of regulatory elements. The relationship between
individual classes of regulatory elements and constrained sequences
varies considerably, ranging from cases where there is strong evo-
lutionary constraint (for example, pan-vertebrate ultraconserved
regions108,109) to examples of regulatory elements that are not con-
served between orthologous human and mouse genes110. Within
the ENCODE regions, 55% of RFBRs overlap the high-confidence
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Figure 10 | Relative proportion of different annotations among
constrained sequences. The 4.9% of bases in the ENCODE regions
identified as constrained is subdivided into the portions that reflect known
coding regions, UTRs, other experimentally annotated regions, and
unannotated sequence.

Table 4 | Eleven classes of genomic elements subjected to evolutionary
and population-genetics analyses

Abbreviation Description

CDS Coding exons, as annotated by GENCODE
59 UTR 59 untranslated region, as annotated by GENCODE
39 UTR 39 untranslated region, as annotated by GENCODE
Un.TxFrag Unannotated region detected by RNA hybridization to tiling

array (that is, unannotated TxFrag)
RxFrag Region detected by RACE and analysis on tiling array
Pseudogene Pseudogene identified by consensus pseudogene analysis
RFBR Regulatory factor binding region identified by ChIP-chip assay
RFBR-SeqSp Regulatory factor binding region identified only by ChIP-chip

assays for factors with known sequence-specificity
DHS DNaseI hypersensitive sites found in multiple tissues
FAIRE Region of open chromatin identified by the FAIRE assay
TSS Transcription start site
AR Ancient repeat inserted early in the mammalian lineage and

presumed to be neutrally evolving
CS Constrained sequence identified by analysing multi-sequence

alignments
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constrained sequences. As expected, RFBRs have many uncon-
strained bases, presumably owing to the small size of the specific
binding site. We investigated whether the binding sites in RFBRs
could be further delimited using information about evolutionary
constraint. For 7 out of 17 factors with either known TRANSFAC
or Jaspar motifs, our ChIP-chip data revealed a marked enrichment
of the appropriate motif within the constrained versus the uncon-
strained portions of the RFBRs (see Supplementary Information sec-
tion 5.1). This enrichment was seen for levels of stringency used for
defining ChIP-chip-positive sites (1% and 5% FDR level), indicating
that combining sequence constraint and ChIP-chip data may provide
a highly sensitive means for detecting factor binding sites in the
human genome.
Experimentally identified functional elements and genetic vari-
ation. The above studies focus on purifying (negative) selection.
We used nucleotide variation to detect potential signals of adaptive
(positive) selection. We modified the standard McDonald–Kreitman
test (MK-test111,112) and the Hudson–Kreitman–Aguade (HKA)113

test (see Supplementary Information section 5.2.1), to examine
whether an entire set of sequence elements shows an excess of poly-
morphisms or an excess of inter-species divergence. We found that
constrained sequences and coding exons have an excess of poly-
morphisms (consistent with purifying selection), whereas 59 UTRs

show evidence of an excess of divergence (with a portion probably
reflecting positive selection). In general, non-coding genomic regions
show more variation, with both a large number of segments that
undergo purifying selection and regions that are fast evolving.

We also examined structural variation (that is, CNVs, inversions
and translocations114; see Supplementary Information section 5.2.2).
Within these polymorphic regions, we encountered significant over-
representation of CDSs, TxFrags, and intra-species constrained
sequences (P , 1023, Fig. 13), and also detected a statistically signifi-
cant under-representation of ARs (P 5 1023). A similar overrepre-
sentation of CDSs and intra-species constrained sequences was found
within non-polymorphic segmental duplications.
Unexplained constrained sequences. Despite the wealth of comple-
mentary data, 40% of the ENCODE-region sequences identified as
constrained are not associated with any experimental evidence of
function. There is no evidence indicating that mutational cold
spots account for this constraint; they have similar measures of con-
straint to experimentally identified elements and harbour equal
proportions of SNPs. To characterize further the unexplained con-
strained sequences, we examined their clustering and phylogenetic
distribution. These sequences are not uniformly distributed across
most ENCODE regions, and even in most ENCODE regions the
distribution is different from constrained sequences within experi-
mentally identified functional elements (see Supplementary
Information section 5.3). The large fraction of constrained sequence
that does not match any experimentally identified elements is not
surprising considering that only a limited set of transcription factors,
cell lines and biological conditions have thus far been examined.
Unconstrained experimentally identified functional elements. In
contrast, an unexpectedly large fraction of experimentally identified
functional elements show no evidence of evolutionary constraint
ranging from 93% for Un.TxFrags to 12% for CDS. For most types
of non-coding functional elements, roughly 50% of the individual
elements seemed to be unconstrained across all mammals.

There are two methodological reasons that might explain the
apparent excess of unconstrained experimentally identified func-
tional elements: the underestimation of sequence constraint or over-
estimation of experimentally identified functional elements. We do
not believe that either of these explanations fully accounts for the
large and varied levels of unconstrained experimentally functional
sequences. The set of constrained bases analysed here is highly accur-
ate and complete due to the depth of the multiple alignment. Both
by bulk fitting procedures and by comparison of SNP frequencies to
constraint there is clearly a proportion of constrained bases not cap-
tured in the defined 4.9% of constrained sequences, but it is small (see
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Supplementary Information section 5.4 and S5.5). More aggressive
schemes to detect constraint only marginally increase the overlap
with experimentally identified functional elements, and do so with
considerably less specificity. Similarly, all experimental findings have
been independently validated and, for the least constrained experi-
mentally identified functional elements (Un.TxFrags and binding
sites of sequence-specific factors), there is both internal validation
and cross-validation from different experimental techniques. This
suggests that there is probably not a significant overestimation of
experimentally identified functional elements. Thus, these two expla-
nations may contribute to the general observation about uncon-
strained functional elements, but cannot fully explain it.

Instead, we hypothesize five biological reasons to account for the
presence of large amounts of unconstrained functional elements. The
first two are particular to certain biological assays in which the ele-
ments being measured are connected to but do not coincide with the
analysed region. An example of this is the parent transcript of an
miRNA, where the current assays detect the exons (some of which
are not under evolutionary selection), whereas the intronic miRNA
actually harbours the constrained bases. Nevertheless, the transcript
sequence provides the critical coupling between the regulated pro-
moter and the miRNA. The sliding of transcription factors (which
might bind a specific sequence but then migrate along the DNA) or
the processivity of histone modifications across chromatin are more
exotic examples of this. A related, second hypothesis is that deloca-
lized behaviours of the genome, such as general chromatin access-
ibility, may be maintained by some biochemical processes (such as
transcription of intergenic regions or specific factor binding) without
the requirement for specific sequence elements. These two explana-
tions of both connected components and diffuse components related
to, but not coincident with, constrained sequences are particularly
relevant for the considerable amount of unannotated and uncon-
strained transcripts.

The other three hypotheses may be more general—the presence
of neutral (or near neutral) biochemical elements, of lineage-
specific functional elements, and of functionally conserved but
non-orthologous elements. We believe there is a considerable pro-
portion of neutral biochemically active elements that do not confer a
selective advantage or disadvantage to the organism. This neutral
pool of sequence elements may turn over during evolutionary time,

emerging via certain mutations and disappearing by others. The size
of the neutral pool would largely be determined by the rate of emer-
gence and extinction through chance events; low information-
content elements, such as transcription factor-binding sites110 will
have larger neutral pools. Second, from this neutral pool, some ele-
ments might occasionally acquire a biological role and so come under
evolutionary selection. The acquisition of a new biological role would
then create a lineage-specific element. Finally, a neutral element from
the general pool could also become a peer of an existing selected
functional element and either of the two elements could then be
removed by chance. If the older element is removed, the newer ele-
ment has, in essence, been conserved without using orthologous
bases, providing a conserved function in the absence of constrained
sequences. For example, a common HNF4A binding site in the
human and mouse genomes may not reflect orthologous human
and mouse bases, though the presence of an HNF4A site in that
region was evolutionarily selected for in both lineages. Note that both
the neutral turnover of elements and the ‘functional peering’ of ele-
ments has been suggested for cis-acting regulatory elements in
Drosophila115,116 and mammals110. Our data support these hypo-
theses, and we have generalized this idea over many different func-
tional elements. The presence of conserved function encoded by
conserved orthologous bases is a commonplace assumption in com-
parative genomics; our findings indicate that there could be a sizable
set of functionally conserved but non-orthologous elements in the
human genome, and that these seem unconstrained across mammals.
Functional data akin to the ENCODE Project on other related spe-
cies, such as mouse, would be critical to understanding the rate of
such functionally conserved but non-orthologous elements.

Conclusion

The generation and analyses of over 200 experimental data sets from
studies examining the 44 ENCODE regions provide a rich source of
functional information for 30 Mb of the human genome. The first
conclusion of these efforts is that these data are remarkably inform-
ative. Although there will be ongoing work to enhance existing assays,
invent new techniques and develop new data-analysis methods, the
generation of genome-wide experimental data sets akin to the
ENCODE pilot phase would provide an impressive platform for
future genome exploration efforts. This now seems feasible in light
of throughput improvements of many of the assays and the ever-
declining costs of whole-genome tiling arrays and DNA sequencing.
Such genome-wide functional data should be acquired and released
openly, as has been done with other large-scale genome projects, to
ensure its availability as a new foundation for all biologists studying
the human genome. It is these biologists who will often provide the
critical link from biochemical function to biological role for the
identified elements.

The scale of the pilot phase of the ENCODE Project was also
sufficiently large and unbiased to reveal important principles about
the organization of functional elements in the human genome. In
many cases, these principles agree with current mechanistic models.
For example, we observe trimethylation of H3K4 enriched near active
genes, and have improved the ability to accurately predict gene activ-
ity based on this and other histone modifications. However, we also
uncovered some surprises that challenge the current dogma on bio-
logical mechanisms. The generation of numerous intercalated tran-
scripts spanning the majority of the genome has been repeatedly
suggested13,14, but this phenomenon has been met with mixed opi-
nions about the biological importance of these transcripts. Our ana-
lyses of numerous orthogonal data sets firmly establish the presence
of these transcripts, and thus the simple view of the genome as having
a defined set of isolated loci transcribed independently does not seem
to be accurate. Perhaps the genome encodes a network of transcripts,
many of which are linked to protein-coding transcripts and to the
majority of which we cannot (yet) assign a biological role. Our per-
spective of transcription and genes may have to evolve and also poses
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some interesting mechanistic questions. For example, how are splic-
ing signals coordinated and used when there are so many overlapping
primary transcripts? Similarly, to what extent does this reflect neutral
turnover of reproducible transcripts with no biological role?

We gained subtler but equally important mechanistic findings
relating to transcription, replication and chromatin modification.
Transcription factors previously thought to primarily bind promo-
ters bind more generally, and those which do bind to promoters are
equally likely to bind downstream of a TSS as upstream. Interestingly,
many elements that previously were classified as distal enhancers are,
in fact, close to one of the newly identified TSSs; only about 35% of
sites showing evidence of binding by multiple transcription factors
are actually distal to a TSS. This need not imply that most regulatory
information is confined to classic promoters, but rather it does sug-
gest that transcription and regulation are coordinated actions beyond
just the traditional promoter sequences. Meanwhile, although distal
regulatory elements could be identified in the ENCODE regions, they
are currently difficult to classify, in part owing to the lack of a broad
set of transcription factors to use in analysing such elements. Finally,
we now have a much better appreciation of how DNA replication is
coordinated with histone modifications.

At the outset of the ENCODE Project, many believed that the
broad collection of experimental data would nicely dovetail with
the detailed evolutionary information derived from comparing mul-
tiple mammalian sequences to provide a neat ‘dictionary’ of con-
served genomic elements, each with a growing annotation about
their biochemical function(s). In one sense, this was achieved; the
majority of constrained bases in the ENCODE regions are now assoc-
iated with at least some experimentally derived information about
function. However, we have also encountered a remarkable excess of
experimentally identified functional elements lacking evolutionary
constraint, and these cannot be dismissed for technical reasons. This
is perhaps the biggest surprise of the pilot phase of the ENCODE
Project, and suggests that we take a more ‘neutral’ view of many of the
functions conferred by the genome.

METHODS

The methods are described in the Supplementary Information, with more

technical details for each experiment often found in the references provided in

Table 1. The Supplementary Information sections are arranged in the same order

as the manuscript (with similar headings to facilitate cross-referencing). The first

page of Supplementary Information also has an index to aid navigation. Raw

data are available in ArrayExpress, GEO or EMBL/GenBank archives as appro-

priate, as detailed in Supplementary Information section 1.1. Processed data are

also presented in a user-friendly manner at the UCSC Genome Browser’s

ENCODE portal (http://genome.ucsc.edu/ENCODE/).
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S1  ENCODE Project Technical Details 

S1.1 Summary of Data Sets and Data Access 
 
In addition to the ENCODE data portal at the UCSC genome browser ( see Supplement S1.1.2 ) 
the ENCODE data are also being integrated with other genome browsers, such as Ensembl 
(http://www.ensembl.org/index.html) and NCBI Map Viewer 
(http://www.ncbi.nlm.nih.gov/mapview/).  Archived raw microarray data and other numerical-
valued data are available via the NCBI Gene Expression Omnibus (GEO) 
(http://www.ncbi.nlm.nih.gov/geo/) or the EBI ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress/), and sequence-tag data have been submitted to 
EMBL/GenBank/DDBJ 
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S1.1.1  Datasets, acronyms, cell lines, references 
The table below lists the ENCODE datasets, acronyms used, cell lines, and references for each ENCODE dataset. 
 
 

Dataset Description Source Cell lines Abbreviation 
Biological 
Samples 

Biological 
Reps 

Technical 
Rept 

Array/data 
points size Total points 

Accession 
Numbers 

References 

BU 
ORChID 

ORChID 
(OH Radical 
Cleavage 
Intensity 
Database) 

BU 
(Tullius) 

Computati
onal 

CCI 
(Calculated 
cleavage 
intensity) 

NA NA NA 30,000,000 30,000,000  Greenbaum
et al1, 

NHGRI 
DNaseI 

DNaseI-
Hypersensiti
ve Sites 

Duke/N
HGRI 

CD4, 
GM06990
, Hela S3, 
HepG2 

DHS 4 3 3 
(different 
Dnase 
concentrat
ions) 

382,884 13,782,324  Crawford 
et al2 

UNC 
FAIRE 

Formaldehy
de Assisted 
Isolation of 
Regulatory 
Elements 

Univ N 
Carolina 

2091Fib RFBR 1 cell line, 
4 
independe
nt samples 
from 
independe
nt cultures 

4 0 384,000 1,536,000 GEO: GSE4886 Giresi et al3 

UW 
DNaseI 

UW QCP 
DNaseI 

UW/ 
Regulom
e 

GM06990
, HELA, 
CACO2, 
SKNSH, 
CD4, 
HEPG2, 
HUH7, 
EryAdult, 
EryFetal, 
K562, 
PANC1, 
NHBE, 
CALU3, 
SAEC, 
HMEC, 

DHS 16 Pooling 4-
8 
replicates 

4-8  7.5 million 
qPCR 
reactions 
~119,000 
amplicons 

 7,620,000 GEO: GSE4334 Dorschner 
et al4 
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HRE 

UW 
DNaseI 

UW DNase-
array 

 GM06990 DHS 1 2 N/A 384.000 768,000  Sabo et al5 

 GERP 
Cons 

GERP 
conservation 
and 
conserved 
elements 

Stanford 
(Sidow) 

Computati
onal 

   NA NA NA      Cooper et 
al6 

BinCons 
Cons 

BinCons 
conservation 
and 
conserved 
elements 

NHGRI 
(Marguli
es) 

Computati
onal 

   NA NA NA       

Consens 
Elements 

Consensus 
Constrained 
Elements 

ENCOD
E MSA 

Computati
onal 

MCS  NA NA NA       

DLESS Detection of 
Lineage-
Specific 
Selection 

UC 
Santa 
Cruz 

Computati
onal 

   NA NA NA       

MAVID 
Alignme
nt 

MAVID 
Multiple 
Sequence 
Alignments 

UC 
Berkeley 
(Pachter) 

Computati
onal 

   NA NA NA       

MLAGA
N 
Alignme
nt 

MLAGAN 
Multiple 
Sequence 
Alignments 

Stanford 
(Batzogl
ou) 

Computati
onal 

   NA NA NA       

PhastCon
s Cons 

PhastCons 
Conservatio
n and 
Conserved 
Elements 

UC 
Santa 
Cruz 

     NA NA NA       

doi: 10.1038/nature05874    SUPPLEMENTARY INFORMATION

www.nature.com/nature 5



 

 

SCONE 
Cons 

SCONE 
Conservatio
n and 
Conserved 
Elements 

Harvard 
(Sunyaev
) 

Computati
onal 

   NA NA NA       

TBA 
Alignme
nt 

TBA 
Multiple 
Sequence 
Alignments 

Penn 
State 
/NHGRI 

Computati
onal 

  NA  NA NA       

Uva 
DNA 
Rep 

Temporal 
Profiling of 
DNA 
Replication 

Univ 
Virginia 

HeLa TR50 5 2 2  continous 
data set, 
736,787 
probes 
(25mer 
each) on 
affymetrix 
ENCODE 
array 

14,735,740 E-MEXP-708 Jeon et al7 

Uva 
DNA 
Rep Ori 

DNA 
Replication 
Origins 

Univ 
Virginia 

  TR50 minima 5 2 2   229 E-MEXP-708 Karnani et 
al8 

BU First 
Exon 

First Exon 
Activity 

BU 
(Weng) 

Computati
onal 

   NA NA        Ding & 
Cantor9 
Ding & 
Cantor10 
Halees et 
al11 
Halees & 
Weng12 

LI ChIP Ludwig 
Institute/UC
SD 
ChIP/Chip 

Ludwig 
Inst/UCS
D 

HeLa, 
IMR90, 
HCT116, 
THP1 

RFBR 27 3  1  24046 1,947,726  GDS876, 
GSE2672, 
GSE2801, 
GSE2730, 
GSE2072, 
GSE1778 

Kim et al13 
Kim el al14 

LI Ng 
ChIP 

Ludwig 
Institute/UC
SD 
Nimblegen 
ChIP/Chip 

Ludwig 
Inst/UCS
D 

HeLa, 
IMR90,  

RFBR 11 3  1  385,000 12,705,000  GSE2813 Heintzman 
et al15 
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Sanger 
ChIP1 

Histone 
Modification 
ChIP/chip 

Sanger GM06990
, HeLaS3, 
HFL1, 
K562, 
MOLT4, 
PTR8 

RFBR 27 3 2 24005 3,816,795  Arrayexpress: E-
MEXP-269, E-
TABM-140 

Koch et 
al16 

UT-
Austin 
STAGE 

Sequence 
Tag 
Analysis of 
Genomic 
Enrichment 
identificatio
n of c-Myc 
and STAT1 
targets 

UT 
Austin 

HeLa RFBR 2 1   238708 238,708 GSE6312 Bhinge et 
al17 

Stanf 
ChIP 

ChIP/Chip 
with Sp1, 
Sp3 

Stanford 
(Myers) 

  RFBR 6 3     2   

Stanf 
Meth 

Methylation 
Digest 

Stanford 
(Myers) 

Be2C, 
CRL1690, 
HCT116, 
HT1080, 
HepG2, 
JEG3, 
Snu182, 
U87 

  8 3     2   

Stanf 
Promoter 

Promoter 
Activity 

Stanford 
(Myers) 

AGS, 
BE(2)C, 
T98G, 
G402, 
HCT116, 
HMCB, 
HT1080, 
SKNSH, 
HeLa, 
HepG2, 
JEG3, 
MG63, 
MRC5, 
PANC1, 
SNU182, 
U87MG 

  16          Cooper et 
al18 

                                                 
1 Not all factors were done in all cell lines, some factor/cell line combinations have only one technical replicate 
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UCD Ng 
ChIP 

ChIP/Chip 
of E2F1, C- 
Myc 

UC 
Davis 

HeLa RFBR 2 3 1 384,000 2,304,000 GSE4354, 
GSE4306 

Bieda et 
al19 

Uppsala 
ChIP 

ChIP/chip in 
HepG2 

Univ 
Uppsala 

HepG2 RFBR 9 3 1 21648  584,496  Arrayexpress 
E-MEXP-452 

Rada-
Iglesias et 
al20 

UT-
Austin 
ChIP 

ChIP/Chip 
of C-Myc, 
E2F4 

UT 
Austin 

HeLa, 
2091 
fibroblast 

RFBR 4 3   384,000 4,608,000  ENCODE 
Project 
Consortium
21 

Yale 
ChIP Sig 

ChIP/Chip  
of STAT1, 
BAF, JUN, 
FOS 

Yale HeLa RFBR 5 3-5 

1 384,000 

7,296,000 GSE2714, 
GSE3448, 
GSE3449, 
GSE3549, 
GSE3550 

Euskirchen 
et al22 

2Harvard
/AFFX 
ChIP-
chip 

ChIP-chip 
signal 

Harvard 
(Struhl) 
AFFX 

HL-60, 
Me180 

RFBR 47 3-5 

2 732,046 

295,746,584 GPL1789 Cawley et 
al23 

3Yale 
RFBR 
Clusters 

RFBR 
Enriched / 
Depleted 
regions 

Yale 
(Gerstein
) 

Computati
onal 

 NA NA 

NA  

1415  Zhang et 
al24 

Affy 
RNA 
Signal 

PolyA+ 
RNA Signal 

Affymetr
ix 

HL60, 
HeLa, 
GM06990 

TxFrag 6 3 2  732,046 26,353,656 GPL3111 Kapranov 
et al25 

EGASP EGASP 
promoter, 
protein 
coding, and 
pseudo gene 
predictions  

EGASP Computati
onal 

  NA NA NA   126,8394   Guigo et 
al26 
Bajic et al27 
Zheng & 
Gerstein28 

GENCO
DE 
Genes 

Gene 
Annotations 

GENCO
DE 

 GENCODE            Harrow et 
al29 

Yale 5' 
RACE  

Yale 5' 
RACE 

Yale NB4 5’ RACE 1 N/A N/A 3106 3106  Trinklein et 
al30 

                                                 
2 Not all factors were done in both cell lines, not all factors were done for the same time points, not all factors were done in the same 
number of replicates. 
3 http://dart.gersteinlab.org 
4 Consists of 122,038 predicted exons, 4600 predicted promoters, 201 predicted pseudogenes 
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product end 
sequencing 

GIS 
ChIP-
PET 

ChIP-PET of 
STAT1, p53 

GI 
Singapor
e 

HeLa, 
HCT116 

Chip-PET 1 1 1 N/A 1,238,753  Wei et al31 

GIS PET 
RNA 

PETof 
PolyA+  
RNA 

GI 
Singapor
e 

MCF7, 
HCT116 

GIS-PET 1 1 1 N/A 864,964  Ng et al32 

RIKEN 
CAGE 

CAGE 
Predicted 
Gene Start 
Sites 

RIKEN   CAGE  39  1 1     5ABAAA0000001-
ABAAA0345530 
ABAAB0000001-
ABAAB0349735 
ABAAC0000001-
ABAAC0081282 
ABAAD0000001-
ABAAD0067015 
ABAAE0000001-
ABAAE0143179 
ABAAF0000001-
ABAAF0080664 
ABAAG0000001-
ABAAG0038560 
ABAAH0000001-
ABAAH0069492 
ABAAI0000001-
ABAAI0048328 
ABAAJ0000001-
ABAAJ0074930 
ABAAM0000001-
ABAAM0402473 
ABAAN0000001-
ABAAN0138842 

Carninci et 
al33 

                                                 
5 DDBJ accession numbers listed are not restricted to CAGE tags mapping to the ENCODE regions.  Sequenced CAGE tags form a 
specific category (“MGA”) in the DDBJ database accessible at ftp://ftp.ddbj.nig.ac.jp/database/mga/ 
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ABAAO0000001-
ABAAO0248911 
ABAAP0000001-
ABAAP0023693 
ABAAQ0000001-
ABAAQ0268395 
ABAAR0000001-
ABAAR0014605 
ABAAS0000001-
ABAAS0035057 
ABAAT0000001-
ABAAT0035935 
ABAAU0000001-
ABAAU0049424 
ABAAV0000001-
ABAAV0037683 
ABAAZ0000001-
ABAAZ0022849 
ABABA0000001-
ABABA0100977 
ABABB0000001-
ABABB0055212 
ABABD0000001-
ABABD0010632 
ABABE0000001-
ABABE0179630 
ABABF0000001-
ABABF0125171 
ABABG0000001-
ABABG0024354 
ABABJ0000001-
ABABJ0033204 
ABABL0000001-
ABABL0029329 
ABABM0000001-
ABABM0025571 
ABABN0000001-
ABABN0145808 
ABABO0000001-
ABABO0030699 
ABABP0000001-
ABABP0065654 
ABABQ0000001-
ABABQ0321486 
ABABR0000001-
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ABABR0059492 
ABABS0000001-
ABABS0148007 
ABABT0000001-
ABABT0039592 
ABABU0000001-
ABABU0408819 
ABABV0000001-
ABABV0069939 

Stanf 
RTPCR 

Endogenous 
Transcript 
Levels 

Stanford 
(Myers) 

HCT116               

RNA 
Secondar
y 
Structure 
prodictio
n 

EvoFold and 
RNAz 
Predictions 
of RNA 
Secondary 
Structure 
Using TBA 

UC 
Santa 
Cruz 
(EvoFold
) and 
Universit
y of 
Vienna 
(RNAz) 

Computati
onal 

   NA NA  NA      Washietl et 
al34 

Yale 
RNA 

RNA 
Transcript 
Map 

Yale Neut,Plcnt
a, NB4 

TxFrag 5 3-10 2-3 755.000 36.995.000 GSE2671, 
GSE2678, 
GSE2679 

Emanuelss
on et al35 
Rozowsky 
et al36 

HapMap 
Coverage 

Resequencin
g  Coverage 

HapMap     4           

HapMap 
SNPs 

Minor and 
Derived 
Allele 
Frequencies 

HapMap     4          Internation
al HapMap 
Consortium
37 

NHGRI 
DIPs 

Deletion/Ins
ertion 
Polymorphis
ms 

NHGRI 
(Mullike
n) 

                

Sanger 
Assoc 

Genotype-
Expression 
Association 

Sanger GM06990   60 1 6 700 4200  Stranger et 
al38 

SNP 
Recomb 
Hots 

Recombinati
on Hotspots 
from 
Resequencin
g and SNP 

Oxford     270          Internation
al HapMap 
Consortium
37 
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Data 

SNP 
Recomb 
Rates 

Recombinati
on Rates 
from 
Resequencin
g and SNP 
Data 

Oxford     270        Internation
al HapMap 
Consortium
37 
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S1.1.2  Data Repository at UC Santa Cruz 
The ENCODE Project at UCSC web site (http://genome.ucsc.edu/ENCODE) is the main portal 
for sequence based data produced as part of the ENCODE Project. The site provides researchers 
with a number of tools that allows visualization and analysis of the data as well as the ability to 
download data for local analyses.   Details and examples of the new ENCODE-related features 
are available elsewhere39, which describes the portal to the data, highlights the data that has been 
made available, and presents the tools that have been developed within the ENCODE project.  
These features are integrated with the UCSC Genome Browser40, Genome Browser Database41, 
and Table Browser42.   
 
As the primary data repository for sequence based data, the roles of UC Santa Cruz are (i) to 
collect the experimental data and analyses, (ii) to perform basic quality assurance (QA) on the 
submitted data, (iii) to publicly release the data with comprehensive descriptions, (iv) to provide 
interactive displays for integrating the ENCODE data with existing genome-wide data and (v) to 
provide interactive tools for analysis. 

S1.1.3  Data deposition, access and analysis through Galaxy system 
To facilitate data exchange among different ENCODE groups during the analysis process we 
implemented a data repository at http://encode-upload.g2.bx.psu.edu. The repository is a web 
application designed to (1) provide user-friendly interface for data upload, (2) standardize 
naming of data files according to ENCODE guidelines, (3) automatically fragment the data into 
ENCODE analysis partitions, and (4) store the data so it can be accesses through the Galaxy web 
site (http://main.g2.bx.psu.edu). 

S1.2 Experimental reproducibility and confirmation 
To ascertain the reliability of the data produced by the ENCODE Project, the Consortium has 
established two levels of data quality evaluation:  data verification and data validation.  “Data 
verification” refers to assessing the reproducibility of data recording a biochemical event assayed 
by a high throughput method. “Data validation” refers to confirming the biochemical function of 
the DNA elements identified using another, preferably independent, method on a subset of the 
verified data.  For example, for the ChIP-chip technology, data verification involves performing 
at least 3 biological replicates where the top targets identified in each replica are significantly 
correlated.  ChIP-chip validation is done by quantitative PCR (qPCR) on 48 ChIP-chip targets 
selected across a range of signal intensities.  In the spirit of the Human Genome Project’s 
practice of rapid data release, the ENCODE Project requires the immediate release of verified 
data into the appropriate public databases, with the subsequent release of validated data.  For 
more information on the ENCODE data release policy, see: http://www.genome.gov/12513440. 

S1.3 Genome Structure Correction 
 
The type of question that we primarily address in this supplement is: Given two features of 
genome position, e.g. “conservation between species” and “transcription start sites” and a 
measure of the relatedness of these two features, e.g. base or region percentage overlap; how 
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significant is the observed value of the measure?  How does it compare with that which might be 
observed “at random”? 
 
The essential difficulty in dealing with these questions is to determine the appropriate 
interpretation of randomness for the genome, since we observe only one of the multitudes of 
possible genomes that evolution might have produced for our and other species.   
 
We postulate that genomes or stretches of genomes that we observe (1) Can be thought of as a 
number of regions, each of which is homogenous in a sense we describe mathematically below, 
(2) The number of regions is small compared to the total length of the genomic segments we 
consider, (3) Bases that are very far from each other on the average have little to do with each 
other, and (4)  The size of at most all but one homogenous region is small compared to the 
stretch that we observe.  This last assumption is needed for the method we describe, but an 
alternative approach, which is more computationally intensive, can avoid it. 
 
There is considerable evidence for (1), (2), and (4) in the literature43-48 and (3) is clearly 
plausible.  When we translate this into mathematical terms we obtain a formulation more general 
than the patently incorrect assumption that, in the homogeneous regions, bases are independent 
and identically distributed (the multinomial model).  In fact, our formulation is more general and 
hence more conservative than any of the models advanced for convenience in genomics, such as 
Markov models and HMMs.  Remarkably, it enables us to use the genomic data we have to 
estimate the parameters we need to perform the task(s) we outlined earlier.  The formulation, for 
the homogenous pieces, is a well studied one in the context of time series49. 
 
The question of association for two features is now interpretable: Within the given sequence 
dependency structure, are the assignments of feature A and feature B to individual bases made 
independently? 
 
The conceptual basis of the approach is that, under our assumptions, we expect that the 
distribution of our statistic (over all possible genomes for this species), for a stretch of length n 
of the genome, can be approximated, after some renormalization by the distribution of the 
statistic as defined for stretches of length L where L is large, but small compared to n.  This 
enables us to estimate the quantities we need using the empirical distribution of the values of the 
statistic for the n-L stretches of length L present in the data.  We now sketch the actual 
implementation and associated statistics of the methodology.  A fuller, more mathematical 
account is in preparation. 
 
Suppose we want to test the hypothesis that two features F and G are not associated.  For 
example, in the expanding human transcriptome, novel sets of transcripts are regularly recorded; 
one can ask the question, do the base-pairs (bps) corresponding to one such set of transcripts tend 
to overlap with a comprehensive set of bps ostensibly conserved between multiple species more 
than expected at random?   

To answer this question, we consider the bivariate time series (“time” here being the position in 
the sequence in bps), ( ) ( )( ),I t J t  with n data points corresponding to the length of the 
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sequence.  Here, ( ) 1I t =  iff the bp t  belongs to an instance of feature F and ( ) 1J t =  iff t  
belongs to feature G.  We assume that this time series is approximately piecewise stationary. 
 
That is, for all sets of k positions 1, , kt tK  in a region , 1, ,iR i M= K , possible configurations 

( ) ( )1 1, , , ,k ka b a bK  of 0,1-valued pairs, and all h,  
 
1) ( ) ( ) ( ) ( ), ,1 , ,1j j j j i j j j j iP I t h a J t h b j k R P I t a J t b j k R⎡ ⎤ ⎡ ⎤+ = + = ≤ ≤ = = = ≤ ≤⎣ ⎦ ⎣ ⎦  

 
Note that there is no assumption on the relation between regional boundaries.  Within regions 
this covers Markov Chains of any order, HMMs, etc.  The second assumption is that,  
 
2) M n<<   where n is the total length of the region(s) under study. 
 
3) The process ( ) ( )( ),I t J t  is strongly mixing in a suitable sense – see Doukhan50. 
 
We can now represent percent bp overlap: 
 

( ) ( )
( )

I t J t
S

I t
= ∑

∑
 

 
and a symmetrized version of percent regional overlap, essentially as 
 

( ) ( ) ( ) ( )( )
( ) ( )( )

1 1 1
1 1

I t J t I t J t
R

I t I t
− + +

=
− +

∑
∑

 

 
The essential point is that, S and R and all the other statistics we discuss below are smooth 
functions of linear statistics, , 1, 2,...jT j =    For instance,  

1

2

TS
T

= , where 

( ) ( )1
1

1
2 ( )

T n I t J t

T n I t

−

−

=

=
∑
∑

 

 
It is well known (see Doukhan, Chapter Theorem 3, p. 48)50,  that under conditions which 
include the type of module we’ve considered, and the linear statistics we need, the distribution of 

( )
( )

T E T
SD T
−

 is approximated by a standard normal, and that ( )E T μ= , ( )SD T
n

σ
=  to a first 

approximation, where μ  and σ  don’t depend on n.   
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It is also standard that, by the delta method, smooth functions S of linear statistics have the same 

approximations and ( )E S υ= , ( )SD S
n

τ
=  where υ  and τ  are expressible in terms of he 

means, variances, and covariances of the component linear statistics (see Bickel and Doksum, 
Theorem 5.3.4)51. 
 
To test the hypothesis of no association, we need estimates of the expectations of these 
quantities, Ŝ  and R̂  under “randomness”, and then the null distributions of ˆS S−  and ˆR R− .  
To do this we rely on the following principle, whose rationale becomes apparent in the context of 
time series in Politis, Romano, and Wolf52. 
 

1. The distribution of statistics such as nS  and nR  based on the whole segment of length n 
can be approximated by a suitably renormalized version of the distribution of LS  and LR , 
where the subscript L denotes that the statistic is computed on a sub-segment of length L, 
where L is << n, but large compared to the size of a homogeneous subregion51, or by 

concatenating in order n
L

 randomly sampled subsegments as above52. 

2. The distribution of LS  and LR  may be approximated by the empirical distribution of the 
statistic as defined on all n-L possible sub-segments of length L. 

 
Relevant results are theorem 4.2.1 in Politis et al52 and theorem 3.5 and discussion in Kunsch53.   
 
Strictly speaking, the principle applies in the inhomogeneous case only if the size weighted 
variation between the means of the homogeneous regions is small when compared to the total 
variability from within the homogeneous regions after normalization of the latter by the 
maximum total homogeneous region size.  However, if this is not the case, the analysis we 
pursue below is even more conservative than if the assumption holds.  For regional overlap 
statistics we apply a Poisson approximation to the block statistics, which again does not require 
the above negligibility hypothesis.  Fortunately, it is possible, in any case, to check whether the 
variability assumption is adequate by using an analytical formula for the variance of the statistics 
we use (Doukhan, Theorem 2, p. 47)50.  This expression can be estimated correctly from the data 
still subject to a regularization parameter, such as L, even if the between means variability is 
large.  
 
Evidently, application of these methods, choosing the appropriate L in particular, is delicate.  
Some principles for the choice of L are discussed in Politis et al. (Ch. 12, p. 249)52, and 
Buhlmann and Kunsch54.  We check these approaches and choices of L for internal consistency 
below. 
 
Testing 
This is not enough to give us Ŝ , R̂  and the null distribution.  We formulate the hypothesis that 
feature G is not enriched for feature F.  No enrichment means that F and G were placed on the 
sequence independent of each other, but with cognizance of sequence structure.  While arbitrary 
piecewise stationarity is assumed, note that only the two features are assumed independent. 
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All that is assumed for the sequence is still just piecewise stationarity.  In particular, this would 
mean that, in a block of length L occurrences of feature F are approximately independent of 
feature G occurrences in a distant block of length L.  This suggests that for a pair of blocks of 
length L, under the null, if we ascribe the feature F status of position t for 1 t L≤ ≤ in the first 
block to the bps in the second, which we denote ( ) ( )( )(1) (2),I t J t , then the overlap we would 
observe between the ‘dummy’ feature F and the true feature G would have the same distribution 
as the overlap we would observe between the genuine annotations in a block of length L.  Hence, 
for a pair of blocks of length L, we have two observations of true overlap, and two observations 
of this ‘dummy’ overlap.  In the basepair case, the true overlap is just: 

( ) ( ) ( ) ( )
( ) ( )

(1) (1) (2) (2)

2 (1) (2)L

I t J t I t J t
S

I t I t
+

=
+

∑ ∑
∑ ∑

   the ‘dummy’ overlap is just: 

( ) ( ) ( ) ( )
( ) ( )

(1) (2) (2) (1)

2 (1) (2)
ˆ

L

I t J t I t J t
S

I t I t
+

=
+

∑ ∑
∑ ∑

.   Then, the null corresponds to the expected value of 

2 2
ˆ ˆ

L Ld S S= −  being 0. 
 
Now, suppose we draw B pairs of blocks of length L and for each pair b compute LbLb SS 22

ˆ− , 
where we use the subscript to indicate that the quantity is computed based only on the two 

blocks, as above.
Lb

B

b
S

B
S

21
ˆ1ˆ ∑ =

=  

 
The empirical distribution of these B numbers is an approximation to the null distribution of 

ˆ
L LS S−  (whose mean is 0, but whose variance is too large).  We now compute 

Lb

B

b
S

B
S

21
ˆ1ˆ ∑ =

=  .  

If B >> L, this is an adequate approximation to the value we would obtain under the hypothesis 
of independence of F and G.  The theoretical basis for this assertion is based on the following 
principle.  For any pair of blocks, under the null hypothesis, we know that 

( ){ }1 1 2 2: 1,..., , 1,...,I t t b b L b b L= + + + +  and   ( ){ }1 1 2 2: 1,..., , 1,...,J t t b b L b b L= + + + +  are 

independent, where 1 1b +  and 2 1b +  are the start positions of the two blocks.  Of course, our data 
does not have this property unless the null is true, but we can postulate that the marginal 
distributions of ( ){ }1 1: 1,...,I t t b b L= + +  and ( ){ }2 2: 1,...,I t t b b L= + +  are the same as under 
the null, and similarly for J.  In the formulation of our statistic, we are making use of the fact 
that, if 1 2b b−  is large, ( ) ( )( ){ }1 1, : 1,...,I t J t t b b L= + + and ( ) ( )( ){ }2 2, : 1,...,I t J t t b b L= + +  

are approximately independent, whether the null is true or not.  If they were exactly independent, 
then indeed 2

ˆ
LS  has the correct null distribution.  However, if L<<n, we expect that 1 2b b−  is 

large compared to L, so that the approximation is justified.  
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The simplest renormalization is to multiply the statistics ˆ
L LS S−  by

2
n
L

, and then refer ˆ
nS S−  

to the empirical distribution of the B renormalized LbLb SS 22
ˆ−  for a p-value. 

 
A somewhat more sophisticated argument needed for regional statistics leads to estimating the 
covariance of the numerator ˆR R− : 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )(1) (1) (1) (1) (2) (1) (2) (1)1 1 1 1 1 1RN I t J t I t J t I t J t I t J t= − + + − − + +∑  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )(2) (2) (2) (2) (1) (2) (1) (2)1 1 1 1 1 1I t J t I t J t I t J t I t J t+ − + + − − + +∑   and the 

denominator: 
( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )(1) (1) (1) (1) (2) (2) (2) (2)1 1 1 1 1 1RD I t J t I t J t I t J t I t J t= − + + + − + +∑ ∑  

based on blocks of length L, renormalized as before, but base the computation on the identity 

ˆ
ˆ

R RRP R R t P N N tD⎡ ⎤ ⎡ ⎤− ≤ = − ≤⎣ ⎦⎣ ⎦ .  The choice of L is important in these approximations. 

 
Fortunately, in practice there is computationally negligible change in the mean or variance of the 
empirical distributions of ˆ

Lb LbS S−  for a wide range of L.  To address the regional and bp overlap 

statistics, for each feature F,G pairing, we formed the ˆ
Lb LbS S−  for many L ranging from 10 

times the largest feature instance to 1/5th the total sequence length, n, and selected L 
approximately in the center of the largest region of stability, which provided an unambiguous 
choice in each case.    
 
 
A Demonstration of the Method via Simulation 
In order to clearly present the importance of accounting for genomic structure in the estimation 
of the significance of association between two features, we have simulated two dummy features.  
These features occur in 100 homogeneous stretches, (with an average length of 100Kb and 
standard deviation 20Kb) which we concatenated to form an inhomogeneous 10Mb region.   The 
first feature, Feature 1, is somewhat sparse, but densely clustered.  Instances of this feature are 
around 20bps.  The second, Feature 2, is ubiquitous and also densely clustered.  Both features 
occur frequently in some homogeneous subregions, and rarely in others.  On average, there are 
1000 instances of Feature 1 in the 10Mb, and 10,000 instances of Feature 2.  We simulated 
10,000 times in order to compute the empirical distribution of feature overlap (the fraction of 
Feature 2 instances covered by Feature 1).  This distribution was approximately Gaussian, as 
expected. 
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Supplementary Figure 1: QQplot demonstrating the approximate gaussianity of the 
overlap statistics from simulation 

 
We selected one pair of features from these simulation runs to treat as our observed data, which 
was at the 99.9th percentile of both basepair and region overlap.  We employed five methods to 
recapitulate the simulation distribution from this single observation.  Those methods were (1) 
GSC, (2) independent randomization of start-sites and inter-feature-instance distances, (3) 
modeling features and inter-feature-instance distances with alternating exponentials (i.e. 
alternating Poissons), (4) randomly shuffling start positions in a self-avoiding fashion, and (5) 
randomly shuffling start positions in a self avoiding fashion, where feature lengths are sampled 
from the empirical feature-instance-length distribution.   
 
The methods returned vastly different results.  From simulation, we know that the p-value 
associated with the region overlap statistic for this observed data is p ~ 0.005.  The GSC 
recapitulated the simulation distribution accurately, permitting correct significance estimation in 
this border-line case.  Each of the other methods drastically overestimated the significance of the 
observed data. 
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Supplementary Figure 2: The results from simulation and five methods of significance 
estimation 

 

S2  Transcription 

S2.1 TxFrag and Genome Tiling Arrays: Data generation and analysis 
 

S2.1.1.1  Cell culture conditions and RNA preparation for Yale Samples 
Total RNA from Human NB4 Cells: 
NB4 cells were grown and maintained in RPMI-1640 medium (GIBCO, Grand Island, NY) 
supplemented with 10% heat-inactivated fetal calf serum, 2 mmol/L L-glutamine, 100 pg/mL 
penicillin and 100 U/mL of streptomycin. The cells were incubated at 37°C in a humidified air 
atmosphere supplemented with 5% CO2. A fraction of these cells were grown to a concentration 
of 1 X 10e5/mL under the conditions described above and induced with 5 pmol/L all-trans-
retinoic-acid (ATRA; Sigma, St Louis, MO) for 4 days which leading the cells to differentiate to 
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neutrophils. For the monocytes differentiation, a third fraction of the NB4 cells were grown to a 
concentration of 1 X 10e5/mL and pre-treated with 200-nM 1,25(OH)2D3 for 8 h, then with 200-
nM TPA for a total treatment time of 72 h. For each biological replicate of NB4 cells 
(undifferentiated), NB4 cells treated with ATRA and NB4 cells treated with TPA; total RNA 
was extracted using the Qiagen RNA extraction kit according to the manufacturer’s instructions. 
 
Total RNA from Human Neutrophil Cells: 
Human neutrophils were isolated from venous blood (freshly drawn at 8 to 9 AM) of healthy 
volunteers, using dextran sedimentation and centrifugation through Ficoll-Paque Plus 
(Pharmacia, Uppsala, Sweden), as described previously in Subrahmanyam et al55. Total RNA 
was extracted using the Qiagen RNA extraction kit. 
 
PolyA+ RNA from Human Placental Tissue: 
Triple selected polyA RNA for placenta was obtained from Ambion (Austin, TX). All RNA 
samples had an agilent ratio greater than 1 indicating that degradation had not occurred. All RNA 
samples were prepared from a pool of several different individuals. 
 

S2.1.1.2  Cell culture conditions and RNA preparation for Affymetrix samples 
Cell Lines:  
The HL-60 acute myeloid lymphoma cell line was obtained from the American Type Culture 
Collection facility.  Cell were maintained in Iscove's Modified Dulbecco's Medium with 
GlutaMAX (Invitrogen) containing 20% Fetal Bovine Serum (Invitrogen) and 1X 
penicillin/streptomycin (Invitrogen) in a humidified 37°C incubator with 5% CO2.  For each of 
the three biological replicates, cultures were seeded at approximately 3x105 cells/ml and were 
induced with a final concentration of 1 μM ATRA (purchased from Sigma) after 2 days of 
growth when cultures had achieved a density of 106 cells/ml.  These cultures (3 liters total for 
each time point) were then incubated for 2, 8, and 32 hours with ATRA or untreated (0 hour) 
before harvesting.  Both cell viability and recovery after ATRA treatment were assessed by 
Trypan Blue exclusion as well as determining cell density by counting an aliquot on a 
hemocytometer. 
 
HeLa cell line (ATCC accession number CCL-2) was grown in DMEM media (HyClone cat# 
SH30022.02) supplemented with 10% fetal bovine serum (HyClone cat# SH30070.03) and 1X 
penicillin-streptomycin (Invitrogen cat# 10378-016).  GM06990 cell line (Coriell Institute) was 
grown in RPMI media (HyClone cat# SH30027.02) supplemented with 15% fetal bovine serum 
(HyClone cat# SH30070.03) and 1X penicillin-streptomycin (Invitrogen cat# 10378-016). All 
cell lines were grown at 37°C at 5% CO2. 
 
CD11b Cell Surface Antigen Labeling:  
ATRA treated HL-60 cells were monitored for differentiation by detection of CD11b expression.  
Triplicate samples for each time point in each biological replicate (106 cells per sample) were 
centrifuged at 300xg for 10 minutes, media aspirated, and resuspended in 100 µl Label Buffer 
(1x Hanks Buffered Saline, 2% filtered Fetal Bovine Serum, and 0.01% sodium azide). Cells 
were blocked with 5 µl unlabeled isotype matched mouse IgG1κ (BD Pharmingen) on ice for 15 
minutes, then washed with 2 ml ice cold Label Buffer. Cells were pelleted at 300xg for 10 
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minutes and resuspended in 100 µl Label buffer.  Five µl of anti-CD11b antibodies or isotype 
controlled mouse IgG1κ coupled to Alexa 488 (BD Pharmingen) were added to each sample and 
incubated on ice for 30 minutes.  Cells were washed twice in 2 ml Label Buffer and fixed with 
2% formaldehyde in PBS. Samples were stored packed in ice and in the dark until analyzed by 
flow cytometry using a FACScaliber bench top cell sorter (BD Biosciences) counting 10,000 
events for each triplicate sample.  IgG1κ labeled samples were used to determine the amount of 
background fluorescence and non-specific binding.  Percent of CD11b positive cells were 
quantitated using Cellquest Pro software. 
 
Nitroblue Tetrazolium (NBT) Reduction Assay:  
NBT reduction assays were performed in triplicate for each time point for each of the 3 
biological replicates. Approximately 5x105 were collected by centrifugation at 300xg for 10 
minutes at room temperature using a swing bucket rotor.  Media was aspirated away and cells 
were resuspended in 100 µl of growth media.  An equal volume of NBT (Roche) diluted 1:50 in 
PBS was then added to each sample containing 200 ng PMA (Calbiochem). Samples were 
incubated at 37°C for 30 minutes at which time cells were placed on microscope slides and cells 
were scored as either positive or negative based on the presence of dark blue formazin deposites. 
At least 1000 cells were counted for each of the triplicate samples and percent NBT positive cells 
was determined for each time point as a measure of differentiation. 
 
RNA preparation: 
Approximately 5x108 cells per time point per biological replicate were harvested by 
centrifugation and total RNA was purified using RNeasy RNA extraction kit (Qiagen) as per 
manufacturer’s specifications. Each sample required three columns in order to recover the 
majority of the RNA. PolyA RNA was then obtained from the total RNA using Oligo-tex 
purification kits (Qiagen) as per manufacturer’s instructions. 
 
Total RNA was isolated using Qiagen’s RNeasy protocol. Where specified, the polyA+ fraction 
was isolated using Qiagen’s Oligo-tex kits. Cytosolic polyA+ RNA was isolated following 
Qiagen’s RNeasy protocol.  Total or polyA+ RNA was treated with DNAse I and then converted 
into double-stranded cDNA as described in Cheng et al56. 2 mg of cDNA corresponding to 
polyA+ RNA or 10 mg of cDNA corresponding to total RNA were hybridized to ENCODE 
tiling arrays as described in Cheng et al56. 
 

S2.1.2  Description of RNA material used in the RNA mapping experiments 
 

Supplementary Table 1: Description of RNA sources used in the RNA mapping 
experiments 
Cell 
line/Tissue 

Number 
of 
different 
biological 
sources6  

Description Stimulant (if 
applicable) 

Time 
points 
Available 

Cellular 
Compartment 

Method 
of RNA 
profiling 

Method 
of cDNA 
priming 

HL60  promyeloblast, retinoic acid 0, 2, 8 Whole-cell TxFrag random 

                                                 
6 Refers to a number of different sources for primary cell lines or tissues assayed independently 
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acute 
promyelocytic 
leukemia 

and 32 
hrs 

polyA+ RNA hexamer 

HeLa  cervical 
adenocarcinoma 

  Cytosolic 
polyA+ RNA 

TxFrag random 
hexamer 

GM06990  B-Lymphocyte, 
transformed with 
Epstein-Barr 
Virus 

  Cytosolic 
polyA+ RNA 

TxFrag random 
hexamer 

NB4  Acute 
promyelocytic 
leukemia 

retinoic acid 0 and 96 
hrs 

Whole-cell 
total RNA 

TxFrag random 
hexamer 

   12-O-
tetradecanoylphorbol-
13 acetate 

0 and 72 
hrs 

  random 
hexamer 

Primary 
Neutrophils 
from donor 
blood 

10    Whole-cell 
total RNA 

TxFrag random 
hexamer 

Placenta     Whole-cell 
polyA+ RNA 

TxFrag, 
RxFrag 

random 
hexamer 
- 
TxFrag, 
oligo dT 
- RxFrag 

Brain     Whole-cell 
polyA+ RNA 

RxFrag oligo-dT 

Colon     Whole-cell 
polyA+ RNA 

RxFrag oligo-dT 

Heart     Whole-cell 
polyA+ RNA 

RxFrag oligo-dT 

Kidney     Whole-cell 
polyA+ RNA 

RxFrag oligo-dT 

Liver     Whole-cell 
polyA+ RNA 

RxFrag oligo-dT 

Muscle      Whole-cell 
polyA+ RNA 

RxFrag oligo-dT 

Small 
Intestine 

    Whole-cell 
polyA+ RNA 

RxFrag oligo-dT 

Spleen     Whole-cell 
polyA+ RNA 

RxFrag oligo-dT 

Stomach     Whole-cell 
polyA+ RNA 

RxFrag oligo-dT 

Testis     Whole-cell 
polyA+ RNA 

RxFrag oligo-dT 

MCF7  mammary gland 
adenocarcinoma 

beta-estradiol 12 hrs Whole-cell 
polyA+ RNA 

PET oligo-dT 

     Whole-cell 
polyA+ RNA 

PET oligo-dT 

HCT116  colorectal 
carcinoma 

5-fluorouracil 6hrs Whole-cell 
polyA+ RNA 

PET oligo-dT 

kidney 3    Whole-cell 
total RNA 

CAGE random 
hexamer 

cerebrum 4    Whole-cell 
total RNA 

CAGE random 
hexamer 

renal artery     Whole-cell 
total RNA 

CAGE random 
hexamer 

ureter     Whole-cell 
total RNA 

CAGE random 
hexamer 

urinary 
bladder 

2    Whole-cell 
total RNA 

CAGE random 
hexamer 
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prostate     Whole-cell 
total RNA 

CAGE random 
hexamer 

mammary 
gland 

    Whole-cell 
total RNA 

CAGE random 
hexamer 

epididymidis     Whole-cell 
total RNA 

CAGE random 
hexamer 

adipose, 
processed 
lipoaspirate 

    Whole-cell 
total RNA 

CAGE random 
hexamer 

   dihydrotestosterone 9 days Whole-cell 
total RNA 

CAGE random 
hexamer 

   TNF-alpha 48 hrs Whole-cell 
total RNA 

CAGE random 
hexamer 

preadipocyte 2    Whole-cell 
total RNA 

CAGE random 
hexamer 

 2  dihydrotestosterone 9 days Whole-cell 
total RNA 

CAGE random 
hexamer 

 2  TNF-alpha 48 hrs Whole-cell 
total RNA 

CAGE random 
hexamer 

CCD-
1112Sk 

 fibroblast, 
foreskin 

  Whole-cell 
total RNA 

CAGE random 
hexamer 

Human stem 
cells HS181 
p52 grown 
on the 
feeder layer 
of CCD-
1112Sk cells 

    Whole-cell 
total RNA 

CAGE random 
hexamer 

Hep G2  hepatocellular 
carcinoma 

  Whole-cell 
total RNA 

CAGE Two 
libraries: 
random 
hexamer 
and 
oligo-dT 

 

S2.1.3  Scoring of TARs or Yale transfrags and Affymetrix transfrags 
Affymetrix ENCODE microarrays have approximately 750,000 pairs of perfect-match (PM) and 
mismatch (MM) 25 mer oligonucleotide probes to tile all the ENCODE regions at an average 
spacing of 21 bp between probe starts. Technical replicas are scaled to each other using quantile 
normalization57 and then median scaled to 25. The probe intensities from technical replicas are 
combined using a sliding genomic window of 100 bps centered on the genomic coordinate of 
each PM probe. All probe intensities for oligonucleotides within the genomic coordinates 
bounded by the window are combined to estimate the pseudomedian PM-MM intensity (the 
pseudomedian or Lehman-Hodges estimator is computed from the median of all pairwise 
average of PM-MM pairs). This intensity is then assigned to the probe at the center of the 
window. This is repeated for each biological replicate. After this step, biological replicas were 
quantile normalized to each other and then for each PM probe the median of normalized 
intensities from biological replicas is computed. An intensity threshold is determined from 
negative controls; bacterial probe sequences on each microarray, which should not show 
hybridization signal, from the intensity that corresponds to a 5% false positive rate. Transcribed 
regions or transfrags (transcribed fragments) were then established by requiring a genomic 
region longer than 40 bps (the minimum run of the transfrag), where probe intensities above 
threshold are spaced less than 50 bps apart (the maximum gap allowed within the transfrag). 
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Distances are computed from the center nucleotide of each PM oligonucleotide probe. This 
scoring methodology is based on what was used in Kampa et al58 and Cheng et al56. 

S2.1.4  Verification of Affymetrix genome tiling array maps 

 
Supplementary Table 2: Validation results of Affymetrix genome tiling array maps 
  Successful RACE reactions (%)   
  Index 

TF 
5' RACE 3' RACE 5' and 3' 

RACE 
5' or 3' 
RACE 

Transcription 
on both strands 

No transcript 
detected 

Exonic 20 19 (95) 19 (95) 16 (80) 20 (100) 19 (95) 0 (0) 
Intronic 90 71 (79) 77 (86) 66 (73) 79 (88) 65 (72) 11 (12) 
Intergenic 90 62 (69) 65 (72) 44 (49) 77 (86) 46(51) 13 (14) 

Non 
Transfrag 
Regions 

100 66 (66) 60 (60) 45 (45) 75 (75) 44 (44) 25 (25) 

Numbers represent transfrags. Numbers in () represent % of total number of regions tested. 

 
200 transfrags were randomly chosen from the map of HL60 cell line un-stimulated (00hr time 
point) with retinoic acid. The transfrags consisted of 90 intergenic transfrags, 90 intronic and 20 
exonic transfrags. Intergenic or intronic transfrags were defined as correspondingly non-
overlapping or overlapping the bounds of known genes from the UCSC Known Gene track on 
the hs.NCBIv35 version of the genome. Intergenic and intronic transfrags were selected not to 
overlap any mRNA or EST annotation. Information on the index transfrags, primers used for this 
analysis can be found at http://genome.imim.es/gencode/RACEdb. 100 non-transfrag regions that 
mimic transfrags in length were randomly selected throughout the non-repetitive portions of the 
ENCODE regions. 
 
5’ and 3’ RACE analysis was performed on DNAseI-treated cytosolic polyA+ RNA from un-
stimulated HL60 cell line for each transfrag for each strand of the genome totaling to 4 RACE 
reactions per transfrag. RACE reactions were performed essentially as described in Kapranov et 
al59 with the following modifications. cDNA synthesis for the 5’RACE was performed with a 
pool of 12 gene-specific primers. cDNA synthesis was done with two reverse-transcriptases: 
Superscript II and Thermoscript (both form Invitrogen) in two separated reactions with 50 ng of 
polyA+ RNA each. The cDNA reactions were pooled for the RT-PCR step. cDNA synthesis for 
the 3’RACE was performed with oligo-dT 3’ CDS primer as in Kapranov et al59. The cDNA was 
treated with RNAse A/T1 cocktail (Ambion) and RNAse H (Epicentre), purified over Qiagen’s 
columns and pooled for the RT-PCR step. 40 ng of purified cDNA were used as starting material 
for each RT-PCR reaction. Three rounds of amplifications were performed at the RT-PCR step 
of the RACE utilizing 3 transfrag-specific nested RT-PCR primers for both 3’ and 5’ RACE. 
After each round, the RT-PCR reactions were purified using QIAquick 96 PCR purification 
system (Qiagen) and eluted in 70 µl. 1 µl of the first round amplification was used as a template 
for the second round and 0.01 µl of the second round RT-PCR reaction was used as a template 
for the third round. Oligonucleotides 3’ CDS, UPL/UPS and NUP (Clontech SMART II RACE 
protocol) were used as common primes for the first, second and third round of RT-PCR. Each 
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round of amplification consisted of 25 cycles of PCR (94°C for 20 sec; 62°C for 30 sec; 72°C for 
5 min) followed by 10 min at 72°C. Products of the final round of RT-PCRs were purified using 
QIAquick 96, pooled and hybridized to ENCODE arrays as described above. The maps were 
generated using the Tiling Analysis Software (TAS; 
http://www.affymetrix.com/support/developer/downloads/TilingArrayTools/index.affx)  with 
bandwidth of 50. RACEfrags were generated using threshold of 100, maxgap =50 and minrun 
=50. 
 
The Affymetrix RACEfrags were filtered so that each pool contains RACEfrags that are unique 
to the pool. GENCODE RACEfrags were filtered against Affymetrix RACEfrags. Regions 
overlapping RACEfrags from the Affymetrix pools were removed. Pooling was done so that the 
index transfrags within each pool are at least 40 kbp apart from each other.  This is to facilitate 
the unambiguous assignment of the parent child relationships between the index transfrag and 
the RACEfrag. A region (transfrag or non-transfrag) was considered to be positive for presence 
of a transcript of either 5’ or 3’ RACE reaction was scored positive on either strand. 
 
To control for genomic DNA contamination, 3’ RACE reactions were conducted on the 100 non-
transfrag regions with the omission of the reverse transcriptase. Only 1 region was scored as 
positive. 
 
The data for the entire verification dataset can loaded from a centralized RACE database 
RACEdb located at this URL  http://genome.imim.es/gencode/RACEdb. Also, the profile of each 
RACE reaction for each of the 300 index regions could be viewed via the links provided in this 
database in the UCSC browser or loaded as a BED file.  
 

S2.1.5  Experimental reproducibility of RNA mapping using tiling arrays 
The experimental reproducibility of the microarray data was measured by calculating a Pearson 
correlation coefficient (R) between individual microarray experiments. Three tiers of correlations 
were calculated: (1) tier 1: correlation among different technical replicas represented by different 
microarrays hybridized to the same sample; (2)  tier 2: correlation among different biological 
replicas for the same cell line or tissue and (3) tier 3: correlation among different cell 
lines/tissues. The correlation coefficient R was calculated based on the perfect match (PM) 
intensity values. The values shown in the table are R2 * 100 and represent a percent similarity.  
100 would be identical, anything less than 50 quite different, above 80 very similar. As expected, 
the reproducibility among the technical replicas is very high ~97, followed by somewhat lower 
biological reproducibility at ~92. The reproducibility among different cell lines/tissues is quite 
low ~54, as expected for different samples. These results are quite consistent with the 
observation that different biological samples are quite different in the extent of un-annotated 
transcription and that this observation is not caused by poor reproducibility of the array data. 
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Supplementary Table 3: Analysis of technical versus biological reproducibility of the RNA 
mapping experiment obtained with the tiling arrays 

Cell Line/tissue 

Number of 
Technical 
(Array) 
Replicas 

Number of 
Biological 
Replicas 

Technical 
reproducibility 
(Median 
R2*100) 

Biological 
reproducibility 
(Median 
R2*100) 

Reproducibility 
among 
different cell 
lines/tissues 
(Median 
R2*100) 

      
Summary 

      
Total   97.0 92.2 54.3 
      

Individual Cell line/tissue 
      
GM06990 6 3 97.2 97.6  
HeLa 6 3 96.8 96.8  
Placenta 7 3 96.4 93.9  

HL60, 0 hours of 
retinoic acid 
treatment 6 3 92.4 93.5  

HL60, 2 hours of 
retinoic acid 
treatment 6 3 97.8 93.7  

HL60, 8 hours of 
retinoic acid 
treatment 6 3 97.6 94.1  

HL60, 32 hours of 
retinoic acid 
treatment 6 3 98.6 92.2  
NB4, Untreated 8 4 97.3 88.9  

NB4, Treated with 
retinoic acid 8 4 97.9 91.3  

NB4, treated with 12-
O-
tetradecanoylphorbol-
13 acetate 6 3 97.6 98.4  

Primary Neutrophils 
from donor blood 20 10 96.4 89.5  
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S2.2 5’-Specific Cap Analysis Gene Expression (CAGE) 
CAGE libraries60 were prepared using a protocol based on the described procedures in Kodzius 
et al61. A wide variety of human RNA libraries was used (29 distinct RNA libraries 
corresponding to 15 tissues) for CAGE sequencing: the content of the CAGE data repository has 
been described in detail elsewhere33, 62, 63 (http://fantom31p.gsc.riken.jp/cage/). 
 
CAGE technology is based on priming the first strand cDNA with an oligo-dT or a random 
primer, starting from total RNA and synthesize the first-strand cDNA at high temperature (55-
60°C) in presence of trehalose and sorbitol to increase the full-length cDNA rate even in 
presence of strong secondary RNA structure. Full-length cDNA is enriched by cap-trapping, as 
reviewed in Harbers et al64. After chemical biotinylation, RNAseI (cleaving only single strand 
mRNA at any base) is used to remove any ssRNA linking the biotinylated cap and the double-
strand RNA/truncated cDNA. RNA molecules hybridized with full-length cDNA molecules are 
left undigested, and are subsequently captured with streptavidin beads. After several stringent 
washings of the beads, full-length cDNAs are removed with mild alkali treatment. Following the 
addition of a specific linker, which contains the class-IIs restriction enzyme MmeI site next to the 
ligation junction with the 5’ end of cDNAs, the second strand cDNA is synthesized. Next, the 
cDNA is cleaved with MmeI: only the initial 20-21 nucleotides of the cDNA are left attached to 
the 5’-end linker, while cDNA is removed. After addition of appropriate linkers and cycles of 
PCR and purification, restriction-digested double strand sequencing tags are obtained. After 
formation of concatenamers, these are cloned and sequenced. The whole procedure is described 
in details elsewhere61.  
 

S2.2.1  Mapping CAGE tags to the genome 
The sequenced CAGE tags were extracted and aligned to the genome by using BlastN. Only 
CAGE tags without base-calling problems (no “N” nucleotides in the sequence) were used for 
mapping, and tags mapping on multiple genomic regions (such as tags consisting of repeats) 
were not used for the current analysis. Only best-scoring alignments of at least 18 nucleotides 
length or more were chosen: if two or more alignments were best-scoring, the tag was ignored. 
 

S2.3 Gene Identification Signature – Paired End DiTAGS (GIS-PET) 

S2.3.1  Cell lines, Growth condition and RNA preparation 
Two human cancer cell lines were used for GIS-PET analysis.  HCT116 is a human colorectal 
cancer cell line (ATCC#: CCL-247(tm)) and MCF7 is a human breast cancer cell line (ATCC# 
HTB-22(tm)).  Cells grown in three ways were harvested; the log phase of MCF7 cells, MCF7 
cells treated with estrogen (10nM beta-estradiol) for 12 hours and HCT116 cells treated with 
5FU (5-fluorouracil) for 6 hours. Total RNA and polyA+ RNA were prepared by Trizol method 
and oligo-dT using standard molecular biology procedures. 
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S2.3.2  Full length library and PET library construction for GIS analysis 
Full length cDNA library was made by a modified biotinylated cap-trapper approach32, 65.  
Briefly, the 5’ cap structure of mRNA was first biotinylated and the 5’ intact first-strand cDNA 
was selected by streptavidin affinity to biotin. After second-strand synthesis, the double-strand 
cDNAs were cloned into a cloning vector, pGIS1, to form a full-length DNA library. This vector 
contains only two MmeI recognition sites in its multiple cloning sites and therefore introduces 
MmeI recognition sites directly flanking both ends of cDNA inserts.  Purified plasmid prepared 
from the full-length cDNA library was digested with MmeI, end-polished with T4 DNA 
polymerase; and the resulting plasmids containing a pair of end tags from each terminal of the 
original cDNA insert were self-ligated, which were then transformed to form a transitional 
single-PET library. Plasmid DNA extracted from this library was digested with BamHI to release 
the 50bp PETs. The PETs were concatenated and cloned into the BamHI-cut pZErO-1 to form 
the final GIS-PET library for sequencing analysis32.  
 

S2.3.3  PET sequencing and mapping 
PET sequences were extracted from vector trimmed and based called high quality sequence 
reads.  The extraction algorithm included: 5’ vector/insert interface, a fixed size internal spacer 
and 3’ vector/insert interface with PET length ranged from 34 to 40 bp. The extracted PETs were 
then filtered to remove low-complexity sequences.  Each of the PET sequences was split into 5’ 
tag and 3’ tag, and the tags were searched independently for matches in the compressed suffix 
array (CSA) of human genome assembly hg17.  We mandated a minimum 16-nucleotide 
contiguous match for the 5’ (from nucleotide position 1 to 19) and 3’ (from 18 to the last) tags of 
PET to accommodate most possible variations from type II restriction enzyme slippage. The 
mapped tags were then paired based on the criteria that the mapping locations of 5’ and 3’ 
signatures of a PET sequence must be on the same chromosome, in the correct order and 
orientation (5’ 3’), and within appropriate genomic distance (one million base pairs)32, 66.  Each 
PET library sequencing read generates about 10-15 PET sequences. 
 

S2.3.4  Generation and Mapping of DiTag Sequences 
 
            With respect to the ditags and polyA sequences, the RNA samples used in the ditag 
experiments were purified using polyT-affinity columns. The majority of the RNA species in the 
samples were polyA+ RNA, and since we used an oligo-dT primer (NV[T]16, N=A, T, G, C; 
V=T, G, C) for first-strand cDNA synthesis, the presence of a polyA stretch is guaranteed. All 
cDNA fragments generated for ditag analysis should thus be either derived from the polyA tail of 
mRNA or from internal polyA stretches. We found that 98% of ditags mapping to known 
transcripts matched the known 5' and 3' ends, and all the characterized 3' ends showed some kind 
of polyA signals in the defined region (10-30 bp upstream of 3' end), and mostly the canonical 
ones (like AATAAA or ATTAAA). A similar observation was reported by us previously32. 
There are a number of ditag-mapped 3' ends that are different from the known 3' ends. They are 
possible alternative 3' ends or they resulted from internal priming of the oligo-dT primer. To 
distinguish these two possibilities, we manually checked about 100 such "alternative" 3' ends by 
looking at the genomic DNA sequences +/- 50 bp from the ditag-mapped 3' ends. If it was 
derived from internal priming, we would see a stretch of A’s immediately after the ditag site. We 
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found that none (0) has such a polyA stretch, suggesting that none are due to internal priming. 
However, we cannot completely rule out such possibility. For this group of sequences, we did 
observe that a large proportion of the polyA signal is not a canonical ones (AATAAA or 
ATTAAA). It is known that other combinations of nucleotides can also be used as the polyA 
signal. 

S2.4 The GENCODE Annotation 
Available sequence data has been used to delineate an annotation of the known genes and 
transcripts in the ENCODE regions by the GENCODE consortium. Details on the annotation 
pipeline can be found in Harrow et al29. In summary, the ENCODE regions were first subjected 
to a detailed manual annotation by the Havana group at the Sanger Institute; the annotators build 
coding transcripts based on alignments of known mRNA, EST and protein sequences to the 
human genome. The initial gene map delineated in this way was then experimentally refined 
through RT-PCR and RACE, which essentially confirmed the existence of the mRNA sequences 
of the hypothesized genes. Finally, the initial annotation was refined by the annotators based on 
these experimental results.  
 
To assess the completeness of the GENCODE annotation, and the ability of the automatic 
methods to reproduce it, the EGASP community experiment was organized26. EGASP was 
organized in two phases. In January 2005, the GENCODE annotation of 13 regions, among the 
44 ENCODE regions, was publicly released: Gene and other DNA feature prediction groups 
world-wide were asked to submit genome annotations on the remaining 31 regions. Eighteen 
groups participated by submitting 30 prediction sets within four months. When the annotation of 
the entire set of ENCODE regions was released in May, participants, organizers and a committee 
of external assessors met at the Wellcome Trust Genome Campus, Hinxton, UK, for a workshop 
sponsored by the National Human Genome Research Institute (NHGRI) to compare the 
GENCODE annotation, with the predictions by the groups. While the computational methods 
were accurate to predict the individual exons, they were less accurate when linking exons 
together into gene structures, with the best of the programs being able to resolve about 40% of 
the complete gene structures inferred by the human annotators. On the other hand more than 
12,000 unique exons were predicted by the programs, which were not included in the 
GENCODE annotation.  Experimental verification of a subset of them by RT-PCR yielded only 
about 3% verification rate (see Guigó et al26 for details). 
 

S2.4.1  The GENCODE Consortium 
The GENCODE consortium (http://genome.imim.es/GENCODE) was formed to identify and 
map all protein-coding genes within the ENCODE regions. This is achieved by a combination of 
initial manual annotation by the HAVANA team (http://www.sanger.ac.uk/HGP/havana/), 
experimental validation by the GENCODE consortium, and a refinement of the annotation based 
on these experimental results. The HAVANA group divides gene features into eight different 
categories of which only the first two (known and novel CDS) are confidently predicted to be 
protein-coding genes. The common factor between all annotated gene structures is that they must 
be supported by transcriptional evidence, through homology to cDNA, EST and/or protein 
sequences. Eight different loci categories were used to fully classify the annotation produced for 
the ENCODE project29. 
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Extensive experimental validation was used to confirm the initial manual annotation. First, 5’ 
raid amplification of cDNA ends (RACE) was performed on 420 coding loci in 12 different 
tissues and resulted in 229 loci being confirmed by sequenced RACE products. In addition RT-
PCR was used to verify all 360 splice junctions representing 161 novel and putative transcripts, 
resulting in 37% of novel transcripts being confirmed and 19% or the putative transcripts. RT-
PCR verification of 1215 splice junctions identified by computational gene prediction 
algorithms, but not manually annotated by GENCODE, revealed only 2 (0.2%) splice junctions 
could be confirmed, suggesting that few intergenic coding loci remained unannotated29. 

S2.4.2  GENCODE Loci classification as defined in Harrow, et al29 
-known genes are identical to human cDNA or protein sequences and identified by a GeneID in 
Entrez Gene ( http://www.ncbi.nlm.nih.gov/entrez/query .fcg?db=gene).  
-novel CDSs (CoDing Sequence) have an open reading frame (ORF) and are identical, or have 
homology, to cDNAs or proteins but do not fall in the above category; these mRNA sequences 
are submitted to public databases, but they are not yet represented in Entrez Gene or have not yet 
received an official gene name from the nomenclature committee 
((http://www.gene.ucl.ac.uk/nomenclature/).  They can also be novel in the sense that they are 
not yet represented by an mRNA sequence in the species concerned. 
-novel transcripts are as above but no ORF can be unambiguously assigned; these can be 
genuine non-coding genes or they may be partial protein-coding genes supported by limited 
evidence. They should be supported by at least three ESTs from independent sources (not 
originating from the same clone identifier). 
-putative genes are identical, or have homology, to spliced ESTs but lack a significant ORF and 
polyA features; these are generally short two or three exon genes or gene fragments. 
-pseudogenes (assumes no expressed evidence) have homology to proteins but generally suffer 
from a disrupted CDS and an active homologous gene can be found at another locus. This 
category can be further subdivided into processed or unprocessed pseudogenes. Sometimes these 
entries have an intact CDS or an open but truncated ORF, in which case there is other evidence 
used (for example genomic polyA stretches at the 3’ end) to classify them as a pseudogene.  
-transcribed pseudogenes are not currently given a separate tag within GENCODE and are 
handled by creating a pseudogene object  and an overlapping transcript object with the same 
locus name. 
-TEC (To be Experimentally Confirmed). This is used for non-spliced EST clusters that have 
polyA features. This category has been specifically created for the ENCODE project to highlight 
regions that could indicate the presence of novel protein coding genes that require experimental 
validation, either by 5’ RACE or/RT-PCR to extend the transcripts or by confirming expression 
of the putatively-encoded peptide with specific antibodies. 
-artefact gene is used to tag mistakes in the public databases (Ensembl/SwissProt/ Trembl). 
Usually these arise from high-throughput cDNA sequencing projects, which submit automatic 
annotation sometimes resulting in erroneous CDSs that are, for example, 3’ UTRs. 

S2.4.3  Expression levels of GENODE transcripts 
We investigated the expression levels of GENCODE transcripts using the signal levels from the 
11 experiments used to detect TxFrags.(http://genome.ucsc.edu/cgi-
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bin/hgTables?org=Human&db=hg17&hgsid=86335460&hgta_doMainPage=1&hgta_group=enc
odeTxLevels ; tracks Yale Tar, Yale RNA, Affy RNA Signal, Affy Transfrags) 
Each experiment was analysed separately because the threshold level used for calling TxFrags 
could vary substantially from experiment to experiment. Each probe was classified according to 
its coverage by both the TxFrags detected in the particular experiment under consideration and 
the GENCODE annotated exons. The exon type classes were single-cover ie annotated as being 
involved in only a single transcript, multi-cover ie covered by annotation from multiple 
transcripts, coding ie covered by annotation from a transcript with a CDS region and non-coding 
(NC) ie covered by a transcript with no identified CDS. Probes partially overlapping a particular 
exon type were assigned that type hence any given probe could fall into none, any or all four of 
the exon classes. This allowed us to omit boundary-overlapping probes and probes belonging to 
more than one class  from the analyses.  
 
We looked at the distribution of signal levels for the probes which fell both in transfrags and in 
only one of the following annotation classes 'single-cover NC', 'single-cover coding', 'multi-cover 
NC' and 'multi-cover coding' in order to compare the expression levels of the different exon 
classes. The distributions of signal level were broadly similar for the four annotation classes in 
all the tissues and cell lines examined. For an example see Supplementary Figure 3.  
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Supplementary Figure 3: Distributions of affymetrix genome tiling microarray probe 
signal levels for probes which fall both in TxFrags and in exons with different types of 
GENCODE annotation. 'Single' indicates the exon is unique to the transcript; 'multi' 
indicates the exon occurs in more than one transcript; 'coding' indicates the exon belongs 
to a transcript which is annotated as having a protein coding  open reading frame (CDS); 
'nc' indicates the exon belongs to a transcript with no known CDS. Only values for probes 
which belong to a single class are plotted. Signal levels and TxFrags obtained from tracks 
encodeAffyRnaHl60SignalHr32 and encodeAffyRnaHl60SitesHr32 at  
http://genome.ucsc.edu  
 
From this exon level assignment, we have also classified transcripts in a boolean "expressed or 
not"  manner using the expression level of the single-cover  exons alone. Single cover transcripts 
were considered expressed if they had one or more single-cover exons with at least 50% of the 
probes in a TxFrag. For each expressed transcript the median probe signal level for probes of the 
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specified type was extracted.  The distributions of these median values for coding single-cover 
and NC single-cover transcripts were similar to one another in all the tissues and cell lines 
indicating similar levels of expression for the coding and NC transcripts (see Supplementary 
Figure 4).  
 

 
Supplementary Figure 4: Distributions of transcript median probe signal level of single-
cover probes from transcripts having at least one exon annotated as unique to the 
transcript expressed. Exons were considered expressed if at least half the probes they 
contained were also contained in TxFrags. 'Coding' indicates the transcript is annotated as 
having a protein coding open reading frame (CDS); 'nc' indicates the transcript has no 
known CDS. Signal levels and TxFrags obtained from tracks 
encodeAffyRnaHl60SignalHr32 and encodeAffyRnaHl60SitesHr32 at  
http://genome.ucsc.edu 
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S2.5 Generation of Transcript Maps 

S2.5.1  Generation of merged maps 
28 maps were generated that describe the union of the following sources of annotations: 
1. CAGE tags from Riken  
2. PETs from Singapore 
3. GENCODE exons (only exons of known and validated genes are considered here). 
4. Filtered (see below for filtering process) TARS from Yale  
5. Filtered (see below for filtering process) from Affymetrix.  
The set of CAGE tags, PETs and GENCODE exons is same for each file. Only the TAR or 
transfrag content varied. There are 22 maps for each cell line/time point (11 for each strandless 
and stranded content). In addition, there are 2 maps for union of all Affymetrix and Yale array 
data, 2 files for polyA+ RNA data and 2 files for Total RNA data (see Table 2 for the list of cell 
lines and RNA sources).  The strandless files were generated by ignoring strand information 
whereas the stranded files were generated on a strand-by-strand basis. 
 

S2.5.2  Generation of 5' and 3' transcript end maps 
Briefly, a comprehensive map of all nucleotides within the ENCODE regions that have evidence 
of being 5' or 3' ends of genes was generated. The source data for the generation was the 
GENCODE annotation of transcript boundaries (gives connected 5' and 3' edges), the PET 
dataset (gives connected 5' and 3' edges), and the CAGE dataset (gives only 5' edges).  
 
For the maps, only the start or end nucleotide position of a transcript was considered. The 
confidence of ends identified by PET and CAGE data is increased with the number of tags 
mapping to the same position. Any nucleotide within the ENCODE regions that had a 5' or a 
3'end indicated by any of the above data sources was included in the map, and the level of 
support for each data source was annotated.  
 
In detail, the GENCODE transcripts were divided into their respective Havana categories, and 
the support level counted for each of these sets for 5' and 3' positions. The Ditag count is the total 
number of PETs starting (in the 5' case) or ending (3'case) at the position (including identical 
tags), regardless of cell line. The CAGE tag count is the total number of CAGE tags starting in 
the position (5' case), regardless of cell line or tissue source. For parsing issues, the cage count is 
reported in the 3' cases also, where it always is zero. In those cases where 3' ends and 5' ends can 
be connected by GENCODE or Ditag data, this is indicated. 
 
The map should be considered a baseline of all evidence of 5' and 3' ends within the ENCODE 
regions, and sites corresponding to a given level of confidence can easily be extracted from the 
map. An important consideration is that the ends are at nucleotide level scale: there are many 
cases of multiple ends that are closely located (often the next nucleotide positions). This should 
be considered if the goal of extraction is to define promoter regions – in that case, clustering 
nearby locations into one unit is more relevant approach. 
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S2.5.3  Transcriptional Coverage of ENCODE regions 
 

Supplementary Table 4: Summary of Transcriptional Coverage of ENCODE regions. 

 PROCESSED TRANSCRIPTS (PT) PRIMARY TRANSCRIPTS 

 

Bases 
in 
All 
Exons 3 

Bases 
in 
CAGE 
tags 4  

Bases 
in 
PETs 5 

Bases 
in 
Tx 
Frags 6 

Total  
Bases 
in PT 7 

Bases 
in PT 
(ESTs 
included) 8

Bases 
in 
Exons 
and 
Introns 9 

Bases 
with 
5'RACE 10 

Bases 
between 
PETs 11 

Total  
Bases 12 

Total bases1 
29998060 
(percentage)* 

1776157 
(5.9%) 

151149 
(0.5%) 

24939 
(0.1%) 

1369611
(4.6%) 

2519280
(8.4%) 

4826292 
(16.1%) 

17758738 
(59.2%) 

23318182 
(77.7%) 

19658563 
(65.5%) 

27325931 
(91.1%) 

Interrogated 
bases2 
14707189 
(percentage)* 

1447192 
(9.8%) 

116013 
(0.8%) 

19629 
(0.1%) 

1369304
(9.3%) 

2163303
(14.7%)

3545358 
(24.1%) 

9496360 
(64.6%) 

11763410 
(80.0%) 

9767311 
(66.4%) 

13618240 
(92.6%) 

 
1. Based on hg 35 
2. Sequences interrogated by microarrays 
3. Nucleotides in GENCODE exons from protein coding and noncoding transcripts (in whole regions or 
interrogated regions) 
4. Nucleotides covered by CAGE tags 
5. Nucleotides covered by PETs 
6. Nucleotides covered by transfrags from polyA samples (TxFrags)  
7. Nucleotides covered by GENCODE exons, CAGE tags, PETs and polyA transfrags present in processed 
transcripts : all processed transcription (PT) 
8. Nucleotides covered by all sequences in 7. and non-spliced ESTs not included in GENCODE annotations 
9. Nucleotides covered in GENCODE annotated exons and introns 
10. Nucleotides covered by array detected RACE exons and newly detected introns 
11. Nucleotides covered by 5’ and 3’ PET tags and intervening genomic sequences 
12. Nucleotides covered by GENCODE exons and introns, RACE exons and introns, PET tags and intervening 
sequences, all transfrag samples, CAGE tags, and ESTs : all primary transcription 

  *  Percent of ENCODE genomic regions for total and Percent of interrogated nucleotides for interrogated 
 

S2.6 Analysis of protein coding evolution 

S2.6.1  Evolution of protein-coding genes in the ENCODE loci 
The protein-coding regions in the ENCODE loci are generally highly constrained, although the 
redundancy of the genetic code and the physico-chemical properties of different amino acids 
allow some flexibility in their exact nucleotide sequence. We sought to characterize the selective 
pressures that have been acting on the protein-coding genes in the ENCODE loci and 
investigated this via the ratio between the rate of non-synonymous (amino acid changing) and 
synonymous (silent) substitutions, defined here as ω, which we estimated for every codon in the 
GENCODE annotated (ftp://genome.imim.es/pub/other/GENCODE) transcripts. When neutral 
evolution is prevalent, ω is expected to be close to 1. The maintenance of biological function 
places the majority of codons under strong purifying selection (ω << 1), while changes leading to 
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molecular adaptation between species may reveal themselves through excessive numbers of non-
synonymous substitutions (ω > 1). In the context of ENCODE, estimates of ω provide another 
useful function, which is to distinguish likely correct annotations of open reading frames from 
false ones.  
 
Studies of selection are dependent on highly accurate alignments, as local alignment mistakes 
may cause an apparent excess of non-synonymous changes to be observed. The aligners used to 
align the ENCODE genomic sequences operate at the DNA level, and do not explicitly look for 
protein-coding sequence. To produce improved protein alignments, we assumed that the genome 
aligners correctly identified regions orthologous to the human exons and these were extracted, 
along with flanking sequences, and re-aligned using a protein-aware version of the prank 
aligner67. The resulting exon alignments were used to compute sitewise and exon-wide estimates 
of ω using SLR (see Section S2.6.3 )  Our results show that, in line with expectations, 45% and 
72% of codons are under strong (ω < 0.05) or moderately strong (ω < 0.25) purifying selection, 
respectively. Additionally, 81% of exons are highly constrained, with an exon-wide mean ω 
estimate smaller than 0.05 (Supplementary Figure 5, histogram). Of these exons, 5.5% have at 
least one site estimated to have ω significantly greater than 1. A single site (at nucleotide 
position 1740) in a highly conserved exon of ACSL6, for example, was inferred to have 
undergone adaptive evolution (Supplementary Figure 5, upper panel).  
 
In our analyses we noticed a small but significant fraction of exons where the expected pattern of 
substitution is not observed. A small fraction (3.3%) of exons have a mean ω estimate greater 
than 0.25, caused by aberrant estimates at multiple sites. A proposed exon within GRM8, for 
example (Supplementary Figure 5, lower panel), does not appear to evolve with the usual 
evolutionary dynamics associated with protein-coding sequences; only one of the three proposed 
alternative transcripts (variant 003) for this gene contains the unusual exon, and this transcript 
continues in a different reading frame from the others then terminates early. To further 
investigate our results, we devised a novel method to score each exon according to its overall 
tendency to conform to a ‘background’ distribution of sitewise ω values (see Section S2.6.3 ) 
Proposed exons or transcripts were ranked by this ‘oddness score’, allowing the easy 
identification of unusual exons. Aberrant patterns of selection may be explained by interesting 
biological phenomena, such as functionality in only a subset of species or exons having coding 
and non-coding functions, but are also consistent with errors in annotation and/or the 
identification of orthologous sequences. An arbitrary threshold for the ‘oddness’ score can be 
used to filter out the most implausible-looking exons/transcripts from further analyses. The 
results of our analyses are available via http://www.ebi.ac.uk/goldman-srv/encode, including 
prank alignments, sitewise estimates of ω, and lists of GENCODE annotated exons and 
transcripts ordered according to their ‘oddness’ score. Summarized versions of our protein 
analyses are also provided as custom tracks within the UCSC Genome Browser. 
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Supplementary Figure 5: Examples of sitewise ω analyses. The upper panel is from the 
ACSL6 gene of ENCODE target region ENm002. At the top, the colored horizontal lines 
and legend indicate the exons that contribute to each proposed transcript variant (001, ... , 
012). The color of sitewise ω estimates (circles) and their confidence intervals (bars) denote 
the inferred mode of selection acting: blue: purifying selection; grey: unclassified; red: 
adaptive evolution (also highlighted with a pink background). Below this is a per-
nucleotide measure of conservation, with abnormally fast sites colored orange (3rd codon 
positions) or red (1st or 2nd codon positions). The black bars at the bottom record the 
number of sequences available at each alignment position. The upper panel is typical of a 
good protein sequence alignment. The exon boxed in red has a typical exon-wide mean ω, 
indicated by the arrow showing its position relative to the distribution of the means from 
the full data. Note the single site (position 1740) for which significant positive selection is 
inferred. The lower panel is from GRM8 (Enm014). The exon boxed in purple (only 
present in transcript variant 003) has an atypical mean ω value, and comprises many sites 
inferred to have neutral or positively selected evolutionary dynamics. The preceding exon 
is not unusual; in the following one, variant 003 is in a different reading frame, terminates 
early and again has an unusual pattern of sitewise ω estimates. This is suggestive that 
variant 003 is under unusual selective pressures or is not protein coding. 

 

S2.6.2  Consequences of the analysis 
The availability of homologous sequence from many vertebrate species enables the evolutionary 
history of human proteins to be analyzed at the molecular level, giving insights into function and 
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adaptation. The depth of sequence provided by the ENCODE project enabled us to analyze all 
exons from proposed transcripts for selective pressures, providing useful estimates down to 
single codon resolution. Our results show that the majority (81%) of protein-coding exons in the 
ENCODE regions have evolved under strong purifying selection. A small fraction of these 
highly conserved exons (5.5%) have evidence of adaptive evolution at one or more of their 
codon sites, suggesting that continual adaptation is rare. A significant fraction of proposed 
protein-coding exons appear to evolve in an atypical manner, with aberrant patterns of selective 
pressures acting upon them. There is unlikely to be a single specific cause of such unusual 
patterns of selection. It may be attributable to interesting biological phenomena that induce 
unusual forms of selection, including the scenario that the annotated region is not functional in 
some target species. The aberrant patterns may also result from coding sequence overlapping 
other evolutionarily constrained features, leading to purifying selection acting on both 
synonymous and non-synonymous changes in a manner not captured by this analysis. 
Alternatively, the unusual patterns may result from methodological problems, including errors in 
transcript annotation, poor sequence coverage, and alignment mistakes. Differentiating between 
these possibilities is difficult and we have concentrated our methods to highlight unusual patterns 
for further study. Currently, we advocate caution with accepting all proposed transcript variants 
as protein-coding: a region that is transcribed and spliced, even when it contains an open reading 
frame, may not necessarily code for a protein. 
 

S2.6.3  Method for determining the rates of evolution in protein-coding genes 
To improve the quality of the protein alignments, protein-coding exons with 200 bases of 
upstream and downstream flanking regions were extracted from the TBA alignments, and the 
sequences were re-aligned using the prank aligner67. This aligner exploits gene structure, with its 
varying patterns of evolutionary dynamics, and ensures that the alignments satisfy certain 
biological requirements such as ensuring the sequences begin and end with a UTR, and that the 
protein-coding regions are flanked by start/stop codons or donor/acceptor splice sites. The new 
alignments were trimmed by removing the upstream and downstream UTR regions, the two 
nucleotides at the beginning and end of each exon that may be under strong selection for the 
splicing function, and possibly one or two nucleotides to correct the exon into the first reading 
frame. Columns having alignment gaps in the human sequence were removed, as were the 
incomplete codons, caused by (e.g.) non-reading frame alignment gaps, and stop codons. Only 
exons from complete transcripts were included in later analyses. 
Taking the alignments and phylogenetic trees, estimates and confidence intervals for the non-
synonymous to synonymous rate ratio, ω, were obtained for each aligned site using the SLR 
method68. The method requires quantities, such as the length of branches and codon composition, 
that are considered common to all sites and these were estimated on a per-gene basis by 
concatenating all constituent exons. Confidence intervals were calculated for each estimate to 
ensure that the results are useful. We devised a novel method to score each exon according to its 
constituent sites’ overall tendency to conform to the ‘background’ distribution of sitewise ω 
values. We assume this background is largely representative of true protein-coding genes, and 
quantify the deviation of each exon’s ω estimates from this background with Kolmogorov-
Smirnov-like test statistics accounting for the uncertainty in these estimates. This provides an 
‘evolutionary oddness’ score for each exon; gene transcripts can be scored according to the 
maximum oddness score attained by any of their exons.  
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S2.7 Expression and confirmation of GENCODE transcripts and unusual 
splice variants 

 

S2.7.1  Confirmation of unusual splice variants 
 
Reconfirmation of 144 unusual splice variant transcripts was experimentally attempted by RT-
PCR and sequencing of a specific splice-junction in a panel of 24 human tissues. The selected 
splice junction could either be the result of exon-skipping (91 cases) or presence of an exon 
specific to the non-canonical transcript variant (53 cases). A positive amplification was found for 
36 out of 144 cases (see section S2.7.3 ) This approach has been shown to confirm 87% (84/96) 
and 12% (6/50) of exon-exon junctions of known human genes and novel human genes identified 
using the chicken genome as reference29, 69. Thus the rate of confirmation observed here (25%), 
suggests that these transcripts might be less abundant than the canonical ones. However, exon-
exon junction that yielded positive results were found expressed in an average of 8.9 tissues out 
of the 24 tested suggesting that the non-canonical splice variants do not present extremely 
restricted expression patterns. 
 

S2.7.2  Materials and Methods 
24 human cDNAs (brain, heart, kidney, spleen, liver, colon, small intestine, muscle, lung, 
stomach, testis, placenta, skin, PBLs, bone marrow, fetal brain, fetal liver, fetal kidney, fetal 
heart, fetal lung, thymus, pancreas, mammary glands, prostate) were independently mixed with 
JumpStart REDTaq ReadyMix (Sigma) and 4 ng/ul primers (Sigma-Genosys) using a BioMek 
2000 robot (Beckman) as described and modified70. RT-PCR oligonucleotides were designed 
with primer 3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) with default 
parameters. The first 10 cycles of PCR amplification were performed with a touchdown 
annealing temperature decreasing from 60 to 50ºC; annealing temperature of the next 30 cycles 
was carried out at 50ºC. Amplimers were separated on Ready-to-Run precast gels (Pharmacia). 
When the tested exon-exon splice junction was the result of an exon specific to the non-
canonical transcript the amplimers were sequenced directly. On the contrary tested exon-exon 
junction that result from exon-skipping were purified from gel. This procedure allowed 
separating and sequencing the two amplimers corresponding to both the canonical and the non-
canonical transcripts 
 

S2.7.3  Table in the supplemental Excel spreadsheet 
 
This table is included in the attached Excel spreadsheet on the worksheet labeled Section S2.7.3. 
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S2.8 Analysis of unannotated transfrags 

S2.8.1  Analyzing coding potential of transfrags 
The structure of the genetic code gives conserved coding sequence a characteristic periodic 
pattern of evolutionary rates, which can be used to distinguish sequence that is coding (or 
historically coding) from non-coding. Following David et al71, aligned sequences of DNA were 
analyzed by comparing two models: HKY+G72, 73 was used as a null model for non-coding 
sequence and contrasted to an alternative model expanded to allow for a periodic 
“…abcabcabc…” pattern of rate variation; there are no additional restrictions on each of these 
three rates, so this formulation is frame-independent and tests all reading frames simultaneously. 
This choice of models takes into account the possibility of rate variation in non-coding sequence 
while allowing an explicit likelihood ratio test for the presence of periodic variation. The 
periodic pattern is extremely sensitive to shifts in reading frame, as might be caused by 
alignment error or alignment to non-coding sequence. To reduce the effect of frame changes, all 
alignments were humanized (columns with gaps in human were deleted). 
 
Three sets of alignments were analyzed: intronic transfrags, intergenic transfrags and a non-
redundant set of Havana-annotated exons. The composition of these sets is summarized in 
Supplementary Table 5. While the exon alignments tend to be longer and contain more species 
than either of the transfrag sets, there is not a huge disparity between the three sets of data 
analyzed. 
 

Supplementary Table 5: Summary of three sets of data analyzed. Exon alignments tend to 
be longer and be composed of more species than intronic transfrags, which in turn are 
more informative than intergenic transfrags. 

  Intergenic Intronic Havana-annotated exons 
Number analyzed 658 672 3154 
Median no. of species 11 14 17 

IQR (8,14) (12,15) (11,19) 
Median no. of sites 74 84 123.5 

IQR (64,93) (65,128) (86,168.8) 
 
 
The distribution of test statistics for the intergenic transfrags is indistinguishable from that 
expected by random variation under the null model (one-tailed Kolmogorov test vs. χ2

2, pvalue 
0.60) and similarly for intronic transfrags (pvalue 0.93). In comparison, the p-value for the same 
test for Havana-annotated exons is indistinguishable from zero; i.e., the Havana-annotated exon 
set gives a signal that comprehensively rejects the idea that there is no periodicity of rates. 
 
In total, only 6 transfrags from 1330 analyzed (intergenic: 4 from 658, intronic: 2 from 672) 
showed any evidence of periodicity at the 99% significance level, and these can be safely 
dismissed once corrections for multiple comparisons are taken into account.  In other words, 
there seems no reason to believe that the transfrag set contains any protein-coding DNA. 
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The corresponding numbers for the Havana exons are 2661 significant from 3154, with 2252 
remaining significant after correcting for multiple comparisons using the procedure of 
Hochberg74.  This is clearly a very different signal from the transfrags.  The exons not significant 
represent some mixture of Havana-annotated exons that are not actually protein-coding; or that 
have poor Encode alignments; or where the statistical power of the test is not enough to find the 
coding signal (of course, there are also reasons why some of the transfrags could be coding but 
not indicated as such by these tests). 
 
Supplementary Figure 6 shows that the estimated rates for the transfrags tend to be equal 
(a = b = c), consistent with being non-coding, whereas the Havana-annotated exons tend to be 
dominated by a single rate as might be occur if every third position is less constrained than its 
neighbours. Supplementary Figure 7 shows the performance of the periodicity test, if used to 
distinguish between annotated exon “coding sequence” and transfrags “non-coding”. 
 

 
Supplementary Figure 6: Estimated rates for transfrags and Havana-annotated exons. 
Upper left:  The three rates are constrained so each is positive and their sum is 3.0,  and so 
lie in a simplex (an equilateral triangle).  The ambiguity over reading frame is resolved by 
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sorting the rates according to magnitude, hence all points fall in the left upper portion of 
the simplex. Equal rates, the center of the simplex, is the bottom righthand corner of the 
region shown; the upper righthand corner corresponds to one dominant rate.  The left 
upper portion of the simplex is expanded and shown for Havana-annotated exons (upper 
right), intergenic transfrags (lower left) and intronic transfrags (lower right). 

 

 
Supplementary Figure 7: Ability of periodicity test to separate exons and transfrags. 
Assuming that all transfrags are non-coding and all exons are correctly annotated, this 
curve shows the trade-off between specificity and sensitivity for different values of the 
likelihood-ratio test statistic. For comparison, the straight line represents random 
classification. 

 

S2.8.2  Analysis of transfrag coordinated expression in the retinoic acid 
stimulated cell line HL60 

 
We want to test the hypothesis that a non-negligible portion of transfrags (TxFrags) occurring 
next to each other in unannotated regions show a significant correlation in the pattern of 
expression across 4 time points in the retinoic acid stimulated cell line HL60. Taking the October 
2005 release of the GENCODE annotation (track encodeGENCODEGeneKnownOct05 at the 
UCSC genome browser, hg17) we have built a set of unique internal CDS connected exon pairs 
out of the set of transcripts annotated with a complete CDS and at least 4 exons. We discard first 
and last exons as they have shown a higher variability in the hybridization signal due to a more 
frequent overlapping with exons of other transcripts. 
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Transfrags (TxFrags) occurring in the unannotated ENCODE regions generated from the HL60 
cell line at each of the 4 time points have been filtered in order to obtain a set that includes:  
1. the projected intersection across the 4 time points with a minimum length of 40nt.  
2. the projected TxFrags that occur uniquely at one of the 4 time points with a minimum length 
of 40nt. 
 
For each of the previously filtered TxFrags and exons, we have taken the hybridization values of 
the probes overlapping the TxFrag separately for each of the 4 time points of HL60 and assign 
the median of the probes discarding those TxFrags and exon pairs that were overlapped by less 
than 3 probes (an exon pair was discarded if just one of the two exons was overlapped by less 
than 3 probes). 
 
In order to remove spurious correlations due to biases in expression within each different time 
point we take the logarithm of the hybridization values and standardize them ( [X-μ]/SD ). 
Finally, we calculate the Pearson correlation between the following 5 pairs of sets: 
 
unannotated TxFrag vs neighbor unannotated TxFrag, 
unannotated TxFrag vs non-neighbor unannotated TxFrag randomly sampled from the same 
chromosome (intra-chr in the legend), 
unannotated TxFrag vs non-neighbor unannotated TxFrag randomly sampled from a different 
chromosome (inter-chr in the legend), 
exon vs exon (both connected in at least one transcript), 
exon vs non-neighbor (not connected) exon randomly sampled from a different chromosome 
(inter-chr in the legend), 
 
where a neighbor exon is defined as the one member of the same exon pair, while a neighbor 
unannotated TxFrag is defined as the closest unannotated TxFrag for which the genomic space in 
between is not occupied by an exon resulting of projecting the entire set of the GENCODE 
annotations on the genomic space. Thus neighbor unannotated TxFrags share a common intron 
or intergenic region. 
 

Supplementary Table 6: Median correlations, (pseudo)median correlations and their 95% 
confidence interval for each of the five sets of neighbor and non-neighbor TxFrags and 
exon pairs. 

  
Neighbor 
unann 
TxFrags 

non-neigh 
TxFrags intra-
chr 

non-neigh 
TxFrags inter-
chr 

neighbor 
exons 

non-neigh exons 
inter-chr  

Median 0.1690 0.0168 0.0029 0.6680 -0.0074  
(pseudo)median 0.1160 0.0302 0.0064 0.5330 0.0002  
95% CI ps.med. 0.0801:0.1550 -0.0042:0.0651 -0.0277:0.0406 0.4998:0.5667 -0.0304:0.0310 
 
In Supplementary Table 6 we show the median correlation on each set and also the 
(pseudo)median and its confidence interval which have been calculated by using the Wilcoxon 
signed rank test. We observe that the neighbor exon set has the highest median as we expected. 
The neighbor unannotated-TxFrag set has the second highest median as we also expected, 
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although the strength of the median correlation is not very high (0.17) but it is about 10 times 
larger than the non-neighbor TxFrag intra-chromosomal set, about 58 times larger than the non-
neighbor TxFrag inter-chromosomal set and about 23 times larger than the non-neighbor exon 
set. The confidence interval (CI) for the neighbor sets of exons and unannotated TxFrags does 
not include the value of 0 correlation meaning that the correlation, although small in the case of 
the unannotated TxFrags, can be considered significant, while the CIs for the other three non-
neighbor sets do not overlap the CI of the neighbor sets and they do include the value 0 implying 
that the median correlation in these three sets cannot be considered significant. 
 

 
Supplementary Figure 8: Distribution of the median correlation throughout the five sets of 
neighbor and non-neighbor TxFrags and exon pairs 

 
In Supplementary Figure 8 we show the distribution of the median correlation across the five sets 
(vertical bars) together with the accumulated minimum number of pairs at a particular median 
correlation (solid lines). For instance, about 40% of the neighbor exon pairs have at least a 
median correlation of 0.8 while this occurs to about 20% of the neighbor TxFrag pairs occurring 
in unannotated regions. 
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S2.9 RACE and Genome Tiling Arrays: Data generation and analysis 

S2.9.1  Data generation for RACE/array of known protein-coding genes 
5’-RACEs were performed on polyA+ RNAs from 12 human tissues (brain, heart, kidney, spleen, 
liver, colon, small intestine, muscle, lung, stomach, testis, placenta, all BD Clontech) using the 
BD SMARTTM RACE cDNA amplification kit (BD Clontech Cat. No.634914). Double-stranded 
cDNA synthesis, adaptor ligations to the synthesized cDNA and 25 µl final volume RACE 
reactions were performed according to the manufacturers’ instructions. RACE primers were 
designed with primer 3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) with the 
following parameters: 23 ≤ primer size ≤ 27, optimal size=25, 68°C ≤ primer Tm ≤ 72°C, 
optimal Tm = 70°C, 50% ≤ primer GC percentage ≤ 70%. 15 µl aliquots of 80 to 100 RACE 
reactions performed with primers specific to non-neighboring genes and on the same tissue/cell 
line cDNA were assembled in pools, precipitated with ethanol and resuspended in water. 25 µg 
of RACE amplicons were fragmented with DNAse I to the size of 50-100 bp, denatured by 
heating to 99°C for 10 minutes and end labeled with biotin using terminal transferase (TdT; 
Roche) in 35 µl under the following conditions: 1X TdT reaction buffer (Roche), 2.5 mM CoCl2, 
1.15 nmoles of Affymetrix DNA Labeling Reagent (DLR, cat. # 900542) per 1 µg of fragmented 
DNA and 200 units of TdT. The reactions were incubated for 2 hrs at 37oC. 20 µg of labeled 
RACE DNA was hybridized to ENCODE tiling arrays as described in Kapranov et al59. RACE 
maps were generated using the one-sample, two-sample, and interval analysis methods described 
in details below and implemented in the Tiling Analysis Software suite 
(TAS,http://www.affymetrix.com/support/developer/downloads/TilingArrayTools/index.affx). 
The maps were generated with no smoothing (bandwidth = 1) and no CEL file normalization. 
The RACEfrags were generated using probe intensity threshold of 100; maxgap = 30 and minrun 
= 20. Thus, minimal RACEfrag would contain two consecutive positive probes. 
 
One-sample Analysis 
In a one-sample analysis, for example, used to generate TxFrag and RxFrag maps, Tiling Array 
Software (TAS) performs a Wilcoxon signed-rank test on the n probe intensity differences {PMj-
MMj; i=1,...n} by testing the null hypothesis of no shift between the distribution of PM 
intensities and MM intensities. The default alternative hypothesis is that there is a positive shift 
in the distribution of PM-MM, and therefore, a one-sided p-value is reported for the position. 
The p-value reported in the output file may be -10log10(p-value), which is a more suitable 
quantity for plotting against sequence position; higher values are more significant. This converts 
a p-value of 0.1 to a transformed p-value of 10, 0.01 to 20, 0.001 to 30, and so on (this is the 
same transform as the one used for Phred quality scores in the DNA sequencing literature).  
An estimate of signal intensity is also computed. The estimator used is the Hodges-Lehmann 
estimator75 which is the usual estimator associated with the Wilcoxon signed-rank test, and 
which is also known as the pseudomedian. After forming all n values {Di=PMj-MMj; i=1,...,n}, 
the n(n+1)/2 pairwise averages (Di-Dj)/2, known as Walsh averages, are computed. The estimate 
s of signal location is taken to be the median of the n(n+1)/2 Walsh averages and is then 
transformed to log2(max(s,1)). 
  
 
Two-sample Analysis 
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In two-sample analysis, for example, in the ChIP-chip analysis, there are two data sets, which are 
called a treatment (i.e. antibody to a specific factor) and a control group (a whole cell extract or 
non-specific antibody). Each group consists of the subset of data falling within the specified 
bandwidth as described above, resulting in nt treatment pairs of probe intensities {PMt,i-MMt,i; 
i=1,...nt} and nc control pairs of probe intensities {PMc,i-MMc,i; i=1,...nc}. The log-transformed 
quantities {Sg,i=log2(max (PMg,i-MMg,l,1)); g=t,c;i=1,...,ng} are formed and a Wilcoxon signed-
rank test is performed on the two samples {St,i;i=1,...,nt} and {tc,i;i=1,...,nc}. In the case of a PM 
only analysis, instead of using the log-transformed differences, the log-transformed PM signal 
intensities {Sg,i=log2(PMg,i);g=t,c;i=1,...,ng} are used. 
The default test type is a one-sided test, against the alternative that the distribution of the 
treatment data is shifted up with respect to the distribution of the control data. A two-sided or 
lower-sided test can be used instead of the one-sided lower. Similar to the one-sample p-values, 
by default, the -10log10 transform is applied to the output to enable visualization along the 
sequence. 
An estimate of fold enrichment is also computed; the estimator used is the Hodges-Lehmann 
estimator associated with the Wilcoxon rank-sum test75. The estimator is computed by forming 
all ntnc values {Dij=(St,i-Sc,j);i=1,...,nt;j=1,...,nc}. The Hodges-Lehmann estimator is then the 
median of the Dij and can be interpreted as the log2 fold change between the treatment and 
control group signals.  
 
Interval Analysis 
In both the one-sample and two-sample analysis, the Probe Analysis step described above will 
yield a p-value and a signal estimate associated with the location of each position in the sequence 
to which a probe pair aligns. TAS writes the resultant signals to output files, which can then be 
viewed in the Integrated Genome Browser (IGB). Additionally, these signals can be thresholded 
to produce discrete regions, which meet certain detection criteria, along the sequence of interest.  
The method involves three steps: 
• In the first step, a threshold is applied to the value at each probe position, and a position is 
classified as positive if its value exceeds the threshold. The threshold can be applied to the 
signal, and a position can be classified as positive if it is either greater than or less than the 
threshold supplied. Alternatively, the threshold can be applied to the p-value associated with 
each position, in which case, one is typically interested in positions with p-values lower than the 
threshold. 
  • In the second step, positive positions are separated by a distance of up to maxgap are joined 
together to form detected regions. The choice of maxgap is up to the user and depends on assay 
conditions. In general, making it larger is more permissive and will be more forgiving of 
positions which failed to make the threshold in a run of otherwise positive positions. 
 • The final step is to process the list of all detected regions and reject any with a length of less 
than minrun. Again, the choice is dependent on the assay used, but generally making minrun 
smaller is more permissive and allows for shorter runs of positive positions to be classified as 
detected. The final set of all detection regions is written to an output file and can be used as a 
starting point for downstream analysis.  
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S2.9.2  Data generation of RACE/array of pseudogenes 
5’ RACEs to test expression of pseudogenes mapping within the ENCODE regions were 
performed on the same 12 tissues polyA+ RNA and with the same conditions used for known 
protein-coding genes (see above). Similarly, pseudogene RACE primers were designed using the 
same parameters as with the known coding genes RACEs. In addition, pseudogene RACE 
primers were designed either to maximize or to minimize mismatches with pseudogene-parental 
gene pair, thus creating either pseudogene-specific primers and/or primers that recognize both 
the parental gene and the pseudogene, respectively. RACE reactions performed with these 
primers and on the same tissue cDNA were grouped in four pools: a pool of the RACE reactions 
performed with pseudogene-specific primers (5 to 14 mismatches between pseudogene and 
parental gene in the primer region), a pool with non-processed pseudogene-unspecific primers (0 
to 3 mismatches), a pool with processed pseudogene unspecific primers (no mismatch), and a 
pool with processed pseudogene unspecific primers (1 to 3 mismatches). Pools of RACE 
reactions were precipitated, resuspended, digested, labeled and hybridized as described above for 
the known coding gene RACEs. The maps were generated using the TAS software with 
bandwidth of 50. RACEfrags were generated using threshold of 100, maxgap =50 and minrun 
=50. To assess pseudogene transcription, only pool-specific RACEfrags were considered. 
Furthermore, we only used RACEfrags if they were (i) from the pool with pseudogene-specific 
primers or (ii) uniquely mapped to a pseudogene locus or its close 5’ upstream region (< 5 kbp). 
We have also compared pseudogenes with other transcriptional data.  For example, we found that 
56% of ENCODE pseudogenes overlapping with TxFrag, as comparison to a random expectation 
of 5%. The study of pseudogene transcription, including precise parameters and discussions of 
cross-hybridization, will be described in a separate paper76. 
 

S2.9.3  Data generation of RACE/array of ncRNA 
Predicted ncRNA genes were tested for expression by RACE amplification and tiling-array 
hybridization as described above for known coding genes. However because a substantial 
fraction of ncRNA transcripts are not polyadenylated, RACEs reactions were performed 
independently with 12 human tissues cDNA prepared from both polyA+ and total RNA and 
oligo dT and random hexamers, respectively. Moreover whenever possible the RACE primer 
was designed in the most 3’ portion of the predicted ncRNA. Aliquots of same tissue RACE 
reactions were grouped to create pools containing a single reaction per ENCODE region. 
 

S2.9.4  Verification of 5’ RACE/array results for known genes 
551 RACEfrags were selected for independent verification of their connectivity with the original 
annotated gene. They are divided as follows: (set 1) 261 RACEfrags corresponding to the largest 
extension; (set 2a) 81 furthest RACEfrags supported by at least two tissues; (set 2b) 41 
RACEfrags supported by the highest number of tissues (if not in set 2a); (set 3) 94 RACEfrags 
corresponding to the second largest tissue-specific extension; and (set 4) 33 intronic RACEfrags. 
RT-PCR were done either in Affymetrix Inc., Santa Clara (lab.A 300 RACEfrags) or the 
Universities of Geneva and Lausanne, Switzerland (lab.B 300 RACEfrags, 49 overlaps) 
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RT-PCRs in lab.B were performed on the oligo dT-primed cDNA using BD-advantage II 
polymerase mix and following the manufacturers’ instructions (25 µl final volume). Note that the 
RNA used was the same as for the RACE reaction in which the RACEfrag was identified. The 
right primer was the original RACE primer and the left primer was designed with the same 
characteristics (see above) in the RACEfrag to be verified. ENCODE tiling arrays were used as a 
readout of the RT-PCR reactions. 15 µl aliquots of RT-PCR reactions were assembled in pools 
which contained a single reaction per ENCODE region. Pools of RT-PCR reactions were ethanol 
precipitated, resuspended in water, labeled and hybridized to the microarray as described above 
to control the connectivity between the RACEfrags and the original exon chosen to design the 
RACE primer.  
 
Of the 300 RACEfrags, primers could only be selected for 283 by Lab A. The 283 reactions in 
lab A were performed using gene-specific primers for cDNA synthesis. cDNA synthesis was 
conducted on 10 ng of polyA+ RNA from a tissue where a corresponding RACEfrag was 
detected using the same oligonucleotide as used for 5’ RACE analysis. The cDNA synthesis was 
performed with Thermoscript reverse transcriptase (Invitrogen) using the same conditions as 
described in Kapranov et al59 for 5’ RACE cDNA synthesis. The cDNA reactions were purified 
using QIAquick 96 (Qiagen) and ½ of each purified reaction was used as a starting material for 
RT-PCR. For each RACEfrag, two rounds of nested RT-PCR reactions were performed. The 
products of first round of RT-PCR were purified using QIAqucik 96 system, eluted in 80 μl and 
0.01 μl of the first round reaction was used for the second round RT-PCR. Each round of 
amplification consisted of 30 cycles of PCR (94°C for 20 sec; 60°C for 30 sec; 72°C for 2 min) 
followed by 10 min at 72°C. Products of the final round of RT-PCRs were purified using 
QIAquick 96, pooled using the same strategy as in the lab B and hybridized to ENCODE arrays 
as described above.  
 
In addition, RT-PCR reactions for 96 RACEfrags in lab A were done using oligo-dT cDNA as a 
substrate. PolyA+ RNA from brain, colon, heart, kidney, liver, lung and muscle were pooled and 
used for cDNA synthesis following the procedure used for cDNA synthesis for 3’RACE 
described above in section S2.1.4  The resulting cDNA was used for RT-PCR following the 
same PCR conditions as above. 
 
The RT-PCRfrags were generated using the same parameters as the 5’ RACEfrags for the known 
genes (see above) for both sets (Labs A & B). 
 

S2.9.5  Assignment of RACEfrags to the target loci 
The hybridization of the 5'RACE products on the tiling arrays was performed in 5 pools (each 
containing about 80 non adjacent loci) for each of the tissues. The RACEfrags were assigned to a 
particular locus using the following steps. 
 
1) The RACEfrag maps were filtered to remove RACEfrags coming from non-specific 
amplicons. RACEfrags that are not specific to any particular pool of primers almost certainly 
represent non-specific amplicons that are often present in RACE reactions. To remove the 
products of such amplicons, RACEfrags that did not overlap GENCODE annotations and were 
non pool-specific were filtered out if they were overlapping RACEfrags from other pools by 
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more than 50% of their length. In addition, the RACEfrags that overlapped GENCODE exons 
were subdivided in fragments overlapping and non-overlapping exons. The fragmented 
RACEfrags overlapping exons were kept, whereas the ones not overlapping exons were filtered 
as above. 
 
2) A RACE reaction was considered positive if at least one target exon was overlapping a 
RACEfrag. Target region was defined as genomic span between the index exon where the 
original 5’RACE oligonucleotide was designed and the GENCODE annotated 5' terminus of the 
locus29. Target exons were defined as annotated exons within the target region. With these 
criteria we found about 70% of positive reactions and ~90% of the loci were positive in at least 
one of the tissues tested. For the subsequent assignment procedure, only the target loci yielding 
positive reactions were considered. 
 
3) The non-assignable RACEfrags, that map 3' to all target loci belonging to the pool, were 
discarded (~12%). Another group of RACEfrags were classified as ambiguous if they localized 
5’ to a pair of target loci mapping on opposite strands (Supplementary Figure 9). Overall, this 
resulted in 76% of assignable and 12% of ambiguous RACEfrags of the total number of 
RACEfrags kept after step 1. The final filter applied to all RACEfrags was to remove the ones 
overlapping target exons from other pools in order to rule out pooling errors. At the final 
assignment step, the remaining RACEfrags that were internal to the corresponding target locus 
were assigned to that target locus. RACEfrags found outside of the bounds of any target loci 
were assigned to the most proximal 3’ target locus. The ambiguous RACEfrags were assigned to 
both possible loci, with high or low level of confidence: when the RACEfrag was closer to one 
loci than to the other (difference of distances greater than 100 kb), the assignment was 
considered as highly confident for the closest locus (provided that the RACEfrag was at less than 
100 kb from the locus), otherwise, the assignments to both loci were considered as not confident. 
The final set of RACEfrags we describe contains only confidently assigned RACEfrags, they 
represent 70% of all the RACEfrags. 
 

 
Supplementary Figure 9: Classification of RACEfrags for assignment to the target loci. 
The RACEfrags were classified as non-assignable RACEfrags, when they mapped 3' to all 
target loci belonging to the pool (circled in red). They were classified as ambiguous if they 
localized 5’ to a pair of target loci mapping on opposite strands (circled in brown). The 
RACEfrags overlapping or localized in 5' of a single locus in the pool were classified as 
assignable (circled in purple): they were assigned unambigously to the locus they 
overlapped or the closest locus in 3'. 
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Supplementary Table 7: Summary of RACE/microarray experiments 

  EXTERNAL TO THE LOCI  INTERNAL TO THE LOCI 

 
TOTAL 

ANNOTATED  UNANNOTATED ANNOTATED UNANNOTATED

RACEFRAGS  22,569  1,712  1,435  13,199  6,223 

LOCI WITH 
RACEFRAG  359  180  213  356  247 

5’ MOST 
RACEFRAGS  3,282  483  548  2.077  174 

LOCI WITH 5’ 
MOST 
RACEFRAGS 

359  165  195  324  76 

 
Note that while the RACEfrags were assigned to the 3’ most proximal target locus, we envision 
that scenarios where the RACEfrags could in fact be linked to target loci  separated by other 
target loci might exist. We indeed observed numerous cases of extensions reaching across 
several loci (see main text and Supplementary Table 7). However, the verifications based on RT-
PCRs reactions allowed to confirm the majority of connectivity between RACEfrags and target 
loci suggesting that the assignments were correct in most of the cases (see main text for results 
and below for procedure).  
 
Furthermore, we were conservative as non-pool specific RACEfrags overlapping target exons 
from genes from other pools were discarded in case some pooling errors had occurred. As 
described in the main text section the RACE reactions revealed numerous cases of chimeric 
transcripts, thus some of these discarded RACEfrags could well have come from the correct 
target locus. Furthermore, as the target exons of other pools (i.e. the exons between the RACE 
primer and the 5'end of the locus) were discarded, the proportion of RACEfrags overlapping first 
exons is probably underestimated, and the RACEfrags reaching in 3'exons of genes are probably 
not the most distal ones; they were filtered out from the set of 157 RACEfrags the most likely to 
represent 5'ends (Supplementary Figure 10). 
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Supplementary Figure 10: Overlap of RACEfrags with 5’ ends related datasets. Three sets 
of RACEfrags were overlapped with other datasets. 

- 1390 projected RACEfrags: all projected RACEfrags external to the locus, not yet 
annotated as 5' ends (i.e not overlapping annotated first exons): they represent a mixture of 
5'ends and internal new exons.  

- 584 projected RACEfrags : from the first set, the subset of the RACEfrags that are the 
most distal for each locus per tissue was extracted: this set does not necessarily contain only 
5'ends because the length of the ENCODE regions and the distance between genes in the 
pools limit the size of the observable extensions, and also because of the conservative 
filtering of RACEfrags, that could have discarded the most distal ones. However, this set is 
likely to be enriched in 5'ends compared to the previous set. 

- 157 projected RACEfrags: from the 584 RACEfrags, the subset of RACEfrags that are 
the most likely to correspond to 5'ends was extracted. They correspond to loci where the 
length of the maximal extension observed is much lower than the length of the maximal 
possible extension possibly observable (<=50% of the distance to the next locus in the pool 
or encode region) -i.e. no limitation by the size of the interrogated region and pooling- and 
for which there is no limitation by the filtering strategy (upstream exons are not likely to 
have been filtered out). 

The overlaps (stranded when the dataset contained a strand information) were calculated 
for the 3 RACEfrags sets as well as for random sets (200 random sets mimicking each of 
the 3 sets) to compare the random overlap to the observed overlap. All overlaps are 
significant (P-values<0.005).  

A. proportion of RACEfrags in the real (black) and random (grey) sets overlapping the 
different datasets. As expected, there is an enrichment in objects supported by TSS, 
promoters, or Hss from the set of all external RACEfrags to the set of RACEfrags we 
expected to contain more 5'ends.  

B. Pie charts of the different supports found for the RACEfrags in the three sets. 
Red:supported by three datasets, green; supported by two of the sets, blue: supported by 
one of the sets, grey: not supported by the other sets. 

 

S2.9.6  Assignment of RTPCR-frags to the RT-PCR experiments 
The pooling of RT-PCR reactions for array hybridizations was done such that assignment of 
RTPCR-frags to the each target locus would be un-ambiguous, i.e. each pool contained RTPCR 
reactions derived from different ENCODE regions. RTPCRfrags mapping between forward and 
reverse RT-PCR primers were assigned to the corresponding RT-PCR reaction.  
 
To score an RTPCR as positive based on the profile of microarray hybridization, we used a two-
way approach. First, an RT-PCR reaction was considered as positive if RTPCRfrags could be 
found within 1 kb from both forward and reverse RTPCR primer. 33% of the reactions were 
positive under this criteria. A separate scoring stretgy was used on the reactions that did not pass 
this filter to account for the cases where an RTPCR oligonucleotide was picked close to the 
boundary of the target RACEfrag or the target exon, thus resulting in the absence of RTPCRfrags 
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immediately proximal to the primer position: if 3 or more of the RTPCR frags were overlapping 
the original RACEfrags from the tissue where the RT-PCR was performed, the reaction was 
recalled positive (Supplementary Figure 11). Using both scoring strategies combined, about 58% 
of RTPCRs were scored positive.  
 

 
Supplementary Figure 11: Positive call of RT-PCR from array analysis. The figure 
represents a locus that was targetted for RACE with the position of the RACE primer 
(upper panel) and the RACEfrags that were obtained (middle panel). An RT-PCR was 
performed between the target exon used for the 5'RACE and one of the RACEfrags, 
providing RTPCRfrags (lower panel). Two cases of positive RT-PCR are represented. 
First, an RT-PCR reaction was considered as positive if RTPCRfrags could be found 
within 1kb from both forward and reverse RT-PCR primers. Second, for the  the reactions 
that did not pass this filter, the reaction was recalled positive if 3 or more of the RTPCR 
frags were overlapping the original RACEfrags from the tissue where the RT-PCR was 
performed 

S2.9.7  Cloning and sequencing of the RACE/array products 
Two different strategies were employed to sequence the amplified transcripts that link tested 
RACEfrags and known exons. The RT-PCR reactions that appeared as single bands on agarose 
gel were selected for direct sequencing, while the others were cloned into pDRIVE following 
manufacturer’s instructions (Qiagen) before sequencing of a minimum of eight clones. The reads 
were assembled after masking of the vector and mapped to the human genome using exonerate 
(unmasked, max intron length=1.5 Mb) to identify the best hit. The hit has to be more than 100 
bp long, and with a %identity greater than 95%. From 2354 assembled sequences, 703 were 
spliced and mapped in the right target, corresponding to 353 non-redundant sequences (when 
several sequences were identical or included in each other, only one representative was kept). 
The following two filtering steps were applied to remove truncated sequences and those not 
reaching the borders of the target regions (the cloning could lead to a partial loss of the insert). 
First, at least 90% of the genomic span of a target region has to be covered by the RT-PCR 
sequence. Secondly, the RT-PCR sequence must not extend further than 100 bp outside the target 
genomic span. After these filtering steps, 175 unique sequences remained. They are deposited in 
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GenBank under accession numbers DQ655905-DQ656069 and EF070113-070122. They were 
inspected manually by the annotators who provided the GENCODE annotation29 and dubious 
mappings were discarded, leading to a final set of 132 unique sequences. They correspond to 89 
RT-PCR reactions and 69 loci. None of these sequences belong to the set of RT-PCR 
unconfirmed by the array approach, suggesting that this approach is efficient to classify the RT-
PCR reactions. 

S2.10  Pseudogene Annotation 
In addition to the pseudogenes annotated by the GENCODE consortium, four computational 
methods designed specifically for identifying pseudogenes were also applied to the ENCODE 
regions.  They were developed independently by research groups in the Genome Institute of 
Singapore (GIS), University of California Santa Cruz (UCSC) and Yale University.  Details of 
individual methods have been described elsewhere28, 29 or can be found with the corresponding 
data under the ENCODE pseudogenes track in the UCSC genome browser.  These five methods 
differ in (i) queries used to search for pseudogenes (two used known proteins, one used human 
mRNAs, one used known human genes and one used genes derived from GIS-PETs) and (ii) 
parameters used to define and classify pseudogenes.  They resulted in distinct lists of 
pseudogenes ranging from 56 to 172, some of which were method-specific.  We have 
subsequently developed a consensus procedure to consolidate individual pseudogene annotation 
with the aim of providing a uniform pseudogene definition and one comprehensive list of 
pseudogenes. Our current approach built pseudogene annotation based on known proteins in the 
UniProt database and classified pseudogenes based on nearby genomic content and evidence of 
retrotransposition (e.g., lack of introns and polyA tails).  In the end, we annotated 201 
pseudogenes (77 non-processed and 124 processed pseudogenes).  The list of pseudogenes and 
detailed description of our methods are available at http://www.pseudogene.org/ENCODE and 
http://genome.ucsc.edu/ENCODE/.  Full characterizations of these pseudogenes will be 
described in a separate paper76. 

S2.11  Non-protein coding RNAs 

S2.11.1  Expression of known non-coding RNAs and RNA pseudogenes 
There is no comprehensive annotation of non-coding RNAs available for the human genome. 
Blast similarity search with sequences contained in the Rfam database yields appr. 6,200 hits in 
the human genome, 76 of these within the ENCODE regions. 60 of these belong to highly 
repetitive pseudogene RNA families (e.g. Y-RNAs, SRP-RNAs, rRNAs) some of which have 
thousands of copies in the genome.  These are masked by RepeatMasker and not represented on 
the oligonucleotide arrays. As a consequence, they are not subject of analysis in this study.  
 
There are eight well known non-coding RNAs in the ENCODE regions: 4 microRNAs (mir-192, 
mir-194-2, mir-196, mir-483), three H/ACA box snoRNAs (U70, ACA36, ACA56), and H19 a 
mRNA-like spliced non-coding transcript. All of them with the exception of mir-483 could be 
detected by the oligonucleotide experiments in at least one of the 11 tested tissues.  mir-483 
might be specific in fetal liver tissue which is not among the tested tissues.   
 
In addition there are 8 sequences in the ENCODE regions that are similar to well-known 
functional ncRNAs . These are putative pseudogenes. Six are related to snoRNAs (ACA33-
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related, ACA42-related, ACA44-related, U70-related, ACA36-related, E2-related), one is related 
to the 28S rRNA, and one is related to the U6 snRNA. Expression was observed in tiling-array 
data for all but the ACA36-related and E2-related sequences.  The six putative pseudogenes that 
were detected on the tiling-arrays were further analyzed using RACE/tiling-array analysis in 
brain and testis (see Supplement S2.9.2 ).  We could verify the expression of the ACA33-related, 
ACA42-related, ACA44-related, and the 28S rRNA related sequences in both brain and testis. 
Transcription of the U6-related sequence could not be detected in either brain or testis. 
 

S2.11.2  Prediction of structural non-coding RNAs 
 
Three different approaches were used to predict ncRNAs with conserved and thus potentially 
functional secondary structures. The complete non-repeat regions of the ENCODE regions were 
screened with RNAz 0.1.177 and EvoFold 1.178. In addition, an RNAz based screen was 
conducted specifically on regions overlapping with TARs/Transfrags. For the EvoFold and 
RNAz screen, human (hg17) referenced 28-way TBA alignments were used. Different pre-
processing steps and scoring protocols were used to meet the specific requirements of the two 
programs. 
 

S2.11.2.1  EvoFold  
For the EvoFold analysis, sequences with more than 20% gaps relative to human were first 
removed. Second, alignments with sequence from less than six species were eliminated. Third, 
TBA alignment blocks consecutive relative to human were concatenated. Fourth, non-syntenic 
sequences that include segments from disparate genomic regions (more than twice the length of 
the human reference sequence apart) were removed; however, if the resulting alignment had less 
than six sequences, none were removed. EvoFold was then applied to the concatenated 
alignments, and their reverse complements, in 120 long overlapping windows each offset by 40. 
Weak predictions (less than ten pairing bases or an average stem-length of less than three) as 
well as predictions overlapping repeats or retro-genes (as defined by tracks of the UCSC 
browser) were eliminated. Finally, the set was reduced to single coverage, by removing the 
lowest scoring candidates when overlap occurred, and ranked according to score. The final 
prediction set was defined based on the top-50% of the candidates. 
 

S2.11.2.2  RNAz  
Also for the RNAz screen alignments were sliced in overlapping windows of size 120 and slide 
40. Each series of windows was started at the beginning of a TBA block. In cases of windows 
exceeding the end of a block the adjacent block was tried to be concatenated to the current block. 
Two blocks were only merged if all sequences were exactly or almost consecutive (up to 10 
bases were allowed to be missing). Sequences with more than 25% gaps with respect to the 
human sequence were discarded. Only alignments with more than four sequences, a minimum 
size of 50 columns and at most 1% repeat masked letters were considered. RNAz can only 
handle alignments with up to six sequences. From alignments with more than six sequences we 
chose a subset of six sequences optimized for a mean pairwise identity of 80%. In cases of 
alignments with more than 10 sequences we sampled three different of such subsets. The 
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windows were finally scored with RNAz in the forward and reverse complement direction. 
Overlapping hits were combined to a single genomic region. Two prediction sets of different 
significance (P>0.5 and P>0.9) were defined based on the RNA class probability calculated by 
RNAz. 
 

S2.11.2.3  TARs/Transfrag centered RNAz screen 
Non-repetitive chromosomal segments with evidence for transcription based on an analysis of 
high-density oligonucleotide tiling-arrays (i.e. segments matching to TARs/Transfrags) were 
used as a start point for an alternative search for structural ncRNAs using RNAz. TARs were 
first collected and extended by 50 nucleotides across their boundaries on either side in order not 
to miss RNA sequences with tight secondary structures, parts of which may hybridize poorly to 
the microarrays. Furthermore, TARs scored using less stringent scoring criteria (i.e. "low 
abundance" TARs with somewhat weaker evidence for transcription; all "low-abundance" TARs 
are available at http://homes.gersteinlab.org/people/rozowsky/low_abundance_tars) were utilized 
as a starting point in the analysis. All sequences were mapped to their corresponding TBA 
multiple sequence alignment blocks (23-way). In each case, the human sequence together with 
the five most distant sequences, each sharing an overall sequence identity of at least 70% with 
the human sequence, were kept and analyzed using RNAz. Alignment blocks of 120 were 
subjected to RNAz, utilizing an offset of 40 and considering both DNA strands independently 
(smaller alignment blocks of a minimum size of 50 bp were analyzed without offset). Regions 
with an RNAz classification score P > 0.5 were collected. 
 
On the highest significance levels (P>0.9 for RNAz,  top 50% predictions for EvoFold) 3,707 
and 4,986 structural elements were predicted by RNAz and EvoFold, respectively. This 
corresponds to 1.3% and 1.4% of the ENCODE regions. To estimate the statistical significance 
of these predictions, we repeated the screen on randomized alignments that were created using a 
shuffling procedure which preserves base composition, sequence conservation and gap-patterns 
but removes any correlations arising from secondary structures79. As observed previously, both 
programs have a specificity of around 98%-99% on such random alignments. However, in this 
setting where a large number of alignments was scored, this corresponds to a false discovery rate 
of appr. 50% and 71% for RNAz and EvoFold, respectively. The overlap between RNAz and 
EvoFold is surprisingly low. There are only 268 overlapping hits (7% and 5%). This is only an 
enrichment of 1.6 over random.  One reason is  the generally low signal-to-noise ratio in this 
screen. The high false positive rate and the fact that false positives arise for different reasons for 
the two programs, limit the best possible overlap to about 1/3. Moreover, we found that the 
predicted RNA structures by RNAz and EvoFold differ dramatically with respect to sequence 
conservation and GC content. RNAz preferentially predicts regions of relatively high GC content 
and moderate sequence conservation, while EvoFold has its peak sensitivities in AT rich regions 
which are highly conserved.  Since there exists examples of true functional RNA structures in 
both categories, predictions of both programs are of relevance despite the small overlap. On the 
panel of known ncRNAs, both programs agree perfectly. Both RNAz and EvoFold are able to 
detect the three H/ACA snoRNAs and the 4 microRNA precursors. In the long H19 transcript, 
RNAz and EvoFold predict 3 and 8 regions with conserved secondary structure, resp., one region 
is predicted by both programs.  
 

doi: 10.1038/nature05874    SUPPLEMENTARY INFORMATION

www.nature.com/nature 57



 

 

The expression of 50 predicted targets was tested using RACE/array analysis (see Supplement 
S2.9.2 ).  We manually picked promising candidates based on a variety of different criteria 
(absence of alignment artifacts or peculiar gap patterns, sequence conservation, structure 
conservation, compensatory mutations, overall appearance, genomic context etc.) We tested 16 
targets from the EvoFold screen, 17 from the RNAz screen and 9 from the TAR centered RNAz 
screen. In addition, we tested 8 targets that were predicted by both RNAz and EvoFold. The 
experiments were carried out in brain and testis tissues.  These tissues show the greatest and 
most varied transcriptome  thus increasing our chances to identify potential expression of the 
predicted ncRNA even by restricting ourselves to only two tissues. We could verify expression 
in either brain or testis for 32 of the 50 candidates (64%). Results for the single sets: EvoFold: 
9/16 (56%), RNAz: 11/17 (65%), RNAz screen of TAR/transfrag 7/9 (78%), overlapping 
EvoFold/RNAz: 5/8 (63%). Although not specifically selected, it should be added that 3 of the 
16 EvoFold targets,  6 of the 17 RNAz targets, and 3 of the 8 overlapping RNAz/EvoFold targets 
have also some overlap with TARs/Transfrags. Out of these targets that showed expression on 
the tiling arrays,  1 of 3, 2 of 6, and 1 of 3 targets, respectively for the three sets, were detected 
also in the RACE experiments limited to brain and testis.  
 
Details of the computational analysis and additional verification experiments using RT-PCR are 
described in a companion paper34. 
 
 

S2.12  Genome Rearrangements of ENCODE Cell lines 

S2.12.1  Comparative Genomic Hybridization Analysis of the ENCODE common 
cell lines 

 
Two cell lines were chosen as ENCODE consortium common cell lines.  These were a human 
lymphoblastoid cell line from one of the HapMap CEPH pedigrees (GM06990) and the widely 
used human cervical carcinoma line HeLa S3.  The rationale behind these choices was that the 
lymphoblastoid cell line would be as near as possible to a normal karyotype for a cultured line 
and would have high density SNP data from resequencing, while HeLa S3 is a commonly used 
cell line in many studies with specific properties essential for certain technologies e.g. cell cycle 
synchronisation protocols for study of replication time.   
 
However, it is also well know that cell lines in culture are subject to chromosomal 
rearrangements which are sometimes substantial.  In order to assess the extent of chromosomal 
rearrangement in the ENCODE consortium common cell lines we conducted comparative 
genomic hybridisation analysis (CGH) using large-insert clone arrays.  For GM06990, genomic 
DNA was extracted from cultured cells and compared by array-CGH to a reference 
lymphoblastoid cell line DNA (HRC575) using a complete tiling path large-insert clone 
microarray in four replicates including two dye reversals as previously described80.  Only a 
single region of copy number difference was identified between the cell lines at the telomere of 
14q (data not shown), but no rearrangement, insertion or deletion was identified at this resolution 
which affected any of the ENCODE regions.   
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CGH was also performed on HeLa S3 using DNA from a large central culture supplied by 
Ambion to the consortium as well as extracted from HeLa S3 cultured at the Wellcome Trust 
Sanger Institute, compared to DNA from a pool of 20 normal females using a 1Mb resolution 
BAC microarray as previously described81. The results for the two sources of DNA were the 
same and are summarised in see Supplementary Table 8 and Supplementary Figure 12.  Most 
copy number changes identified involve single copy losses/gains in a hypertriploid background.  
Examining in detail the ENCODE regions , in addition to the hypertriploid nature of the cells, up 
to 9 larger regions (more than 2 consecutive clones) are subject to additional chromosomal gain 
while at least 14 regions (more than 2 consecutive clones) are subject to chromosomal loss 
(Supplementary Table 9).  
 

Supplementary Table 8: Ambion/suspension cell line vs. female pool of 20 normal 
individuals, analyzed on the basis of the Ambion cell line results 

Chromosome 1 Gain from 110-209 Mb and from 235Mb to q-ter  
Chromosome 2 Region of loss from 100 Mb to q-ter 
Chromosome 3 Region of loss 64-100 Mb from, gain from 147-178 Mb  
Chromosome 4 Loss of one copy of the entire chromosome in a 

hypertriploid background 
Chromosome 5 Gain equivalent of two extra copies from p-ter to 45 Mb 
Chromosome 6 Region of loss 65-68 Mb and from 118 Mb to q-ter 
Chromosome 7 Gain from p-ter to 44 Mb 
Chromosome 8 Region of loss from p-ter to 116 Mb 
Chromosome 9 Region of loss from –pter to to 30 Mb, gain from 119 Mb to 

q-ter 
Chromosome 10 Region of loss from p-ter to 38 Mb 
Chromosome 11 Region of loss from p-ter to 7 Mb, regions of gain 27-27 

Mb, 33-35 Mb, 46-48 Mb and 59-82 Mb,  region of loss 
from 88 Mb to q-ter 

Chromosome 12 Gain from 37-54 Mb 
Chromosome 13 Region of loss from p-ter to 54 Mb, gain from 109 Mb to q-

ter 
Chromosome 14 Modal 
Chromosome 15 Gain from 39 Mb to q-ter 
Chromosome 16 Potential gain of a single copy of the entire chromosome 
Chromosome 17 Modal 
Chromosome 18 Region of loss from 18 Mb to q-ter 
Chromosome 19 Region of loss from 5-9 Mb, 46-53 Mb, and 57-59 Mb, 

region of gain from 16-18 Mb 
Chromosome 20 Region of loss from p-ter to 26 Mb, gain from 30 Mb to q-

ter 
Chromosome 21 Modal 
Chromosome 22 Loss of one copy of the entire chromosome in a 

hypertriploid background 
Chromosome X Loss from 100 Mb to q-ter 
Chromosome Y N/A 
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Supplementary Figure 12: Whole genome profile (cell line Ambion) 

 
 

Supplementary Table 9: State of ENCODE regions in HeLa S3 as judged by array-CGH 

Build  May  2004 hg17 (NCBI35)   
     
Chromosome Start End Region Hela CGH analysis 
chr1 147971133 148471133 ENr231 Gain 110-209 Mb 
chr2 51570355 52070355 ENr112  
chr2 118010803 118510803 ENr121 Loss 100 to q-ter 
chr2 220102850 220602850 ENr331 Loss 100 to q-ter 
chr2 234273824 234773888 ENr131 Loss 100 to q-ter 

chr4 118604258 119104258 ENr113 
Loss of one copy of the 
entire chromosome 4 

chr5 55871006 56371006 ENr221  
chr5 131284313 132284313 ENm002  
chr5 141880150 142380150 ENr212  
chr6 41405894 41905894 ENr334  
chr6 73789952 74289952 ENr223  
chr6 108371396 108871396 ENr323  
chr6 132218539 132718539 ENr222 Loss 118 Mb to q-ter 
chr7 26730760 27230760 ENm010 Gain from p-ter to 44 Mb 
chr7 89428339 90542763 ENm013  
chr7 113527083 114527083 ENm012  
chr7 115404471 117281897 ENm001  
chr7 125672606 126835803 ENm014  
chr8 118882220 119382220 ENr321  
chr9 128764855 129264855 ENr232 Gain from 119 Mb to q-ter 
chr10 55153818 55653818 ENr114  
chr11 1699991 2306039 ENm011  
chr11 4730995 5732587 ENm009 Possible gain 
chr11 63940888 64440888 ENr332 Possible gain 
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chr11 115962315 116462315 ENm003 Loss from 88 Mb to q-ter 
chr11 130604797 131104797 ENr312 Loss from 88 Mb to q-ter 
chr12 38626476 39126476 ENr123 Gain from 37-54 Mb 
chr13 29418015 29918015 ENr111 Loss up to 54 Mb 
chr13 112338064 112838064 ENr132 Gain from 109 Mb to q-ter 
chr14 52947075 53447075 ENr311  
chr14 98458223 98958223 ENr322  
chr15 41520088 42020088 ENr233 Gain from 39 Mb to q-ter 
chr16 0 500000 ENm008  
chr16 25780427 26280428 ENr211  
chr16 60833949 61333949 ENr313  
chr18 23719231 24219231 ENr213 Loss from 18 Mb to q-ter 
chr18 59412300 59912300 ENr122 Loss from 18 Mb to q-ter 
chr19 59023584 60024460 ENm007 Loss  from 57-59 Mb 
chr20 33304928 33804928 ENr333 Gain from 30 Mb to q-ter 
chr21 32668236 34364221 ENm005  
chr21 39244466 39744466 ENr133  

chr22 30128507 31828507 ENm004
Loss of one copy of the 
entire chromosome 

chrX 122507849 123007849 ENr324 Loss from 100 Mb to q-ter 
chrX 152635144 153973591 ENm006 Loss from 100 Mb to q-ter 

 
CGH analysis was not conducted on additional cell lines beyond the consortium common cell 
lines.  However information is available for other cell lines used from other analyses such as 
SKY-FISH.  HL60 has been mapped by SKY-FISH (data available at 
http://www.ncbi.nlm.nih.gov/sky/skyquery.cgi - query for HL60) and shows substantial 
rearrangement82.  However it is not possible to precisely determine how these rearrangements 
affect the ENCODE regions from the SKY-FISH results which are presented by chromosome 
band. More recent analyses of HL60 are also available83. 
 
 

S3  Regulation of Transcription 
 

S3.1 ChIP-Chip and ChIP-PET experimental methodology 

S3.1.1  Yale Group 
 

S3.1.1.1  Preparation of ChIP DNA from HeLaS3 cells 
For c-Fos, c-Jun, BAF155 and BAF170 HeLaS3 cells were grown by the National Cell Culture 
Center in Joklik's modified minimal essential medium (MEM), supplemented with 5% FBS at 
37°C in 5% CO2, to a density of 6 x105 cells/ml. Cells were fixed with 1% formaldehyde at room 
temperature for 10 min and fixation was terminated with 125 mM glycine. The cells were 
washed twice in cold 1x Dulbecco’s PBS and then stored and shipped as frozen cell pellets. For 
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STAT1, HeLaS3 cells were grown in Dulbecco's modified Eagle's medium for suspension 
(SMEM) supplemented with 5% FBS at 37°C in 5% CO2, to a density of 6 x105 cells/ml. The 
cultures were divided in half and were either induced with 5 ng/ml human recombinant IFN-γ 
(R&D Systems #285-IF), or left untreated, for 30 min at 37°C, 5% CO2 and then fixed with 1% 
formaldehyde final concentration at room temperature for 10 min. Fixations were quenched by 
addition of glycine to 125 mM final concentration and cells were washed twice in cold 1x 
Dulbecco's PBS. All ChIP DNA samples were isolated from nuclear extracts. Nuclei were 
prepared by swelling cells for 10 min in hypotonic lysis buffer (20 mM HEPES, pH 7.9, 10 mM 
KCl, 1 mM EDTA, pH 8, 10% glycerol, 1 mM DTT, 0.5 mM PMSF and protease inhibitors). 
Following dounce homogenization nuclear pellets were collected and lysed in 1x RIPA buffer 
(10 mM Tris-Cl, pH 8.0, 140 mM NaCl, 1% Triton X-100, 0.1% SDS, 1% deoxycholic acid, 0.5 
mM PMSF, 1 mM DTT, and protease inhibitors). Nuclear lysates were sonicated with a Branson 
250 Sonifier to shear chromatin to approximately 0.5 to 1 kb in size. Clarified lysates were 
incubated overnight at 4°C with factor-specific antibodies. Protein-DNA complexes were 
precipitated with RIPA-equilibrated protein A agarose beads and immunoprecipitates were 
washed three times in 1x RIPA, once in 1x PBS, and then eluted from the beads by addition of 
1% SDS, 1x TE (10 mM Tris-Cl at pH 7.6, 1 mM EDTA at pH 8), and incubation for 10 min at 
65°C. Crosslinks were reversed overnight at 65°C. All samples were purified by treatment first 
with 200 μg/ml RNase A for 1 h at 37°C, then with 200 μg/ml Proteinase K for 2 h at 45°C, 
followed by extraction with phenol:chloroform:isoamyl alcohol and ethanol precipitation at -
70°C. 
 

S3.1.1.2  Labeling and Hybridization of ChIP DNA samples 
Full details are available through GEO or are published in Euskirchen et al22. Briefly, for each 
array to be hybridized ChIP DNA isolated from 1 x 108 cells was directly random primed with 
Klenow and labeled with either Cy5 (ChIP DNA prepared with a specific antibody) or with Cy3 
(reference DNA). The reference DNA samples varied for each factor. For c-Fos and c-Jun, total 
genomic DNA was used as reference samples. For BAF155 and BAF170 the reference samples 
were ChIP DNA prepared using normal rabbit IgG. STAT1 ChIP DNA prepared from IFN-γ 
stimulated cells was compared to STAT1 ChIP DNA prepared from uninduced cells, where 
STAT1 is nuclear excluded. Labeled ChIP DNA samples were applied to high density 
oligonucleotide arrays synthesized by maskless photolithography and arrays were hybridized in 
MAUI hybridization stations (BioMicro Systems) with mixing. Datasets consist of 3 or more 
biological replicates (defined as ChIP DNA prepared from distinct cell cultures grown, harvested 
and processed on separate days) and each biological replicate was hybridized to a separate array. 
 

S3.1.1.3  Array Data Processing 
The array data was processed using the Tilescope tool (tilescope.gersteinlab.org; Zhang et al24). 
Array data is first quantile normalized and median scaled between replicate arrays (both Cy3 and 
Cy5 channels). Using a 1000  bp sliding window centered on each oligonucleotide probe, a 
signal map (estimating the fold enrichment [log2 scale] of ChIP DNA)  was generated by 
computing the pseudo-median signal of all log2(Cy5/Cy3) ratios (median of pairwise averages) 
within the window, including replicates. Similarly, a P-value map (measuring significance of 
enrichment of oligonucleotide probes in the window) for all sliding windows was made using the 
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Wilcoxon paired signed rank test comparing fluorensent intensity between Cy5 and Cy3 for each 
oligonucleotide probe. A binding site was determined by thresholding oligonucleotide positions 
with -log10(P-value) (>= 4), extending qualified positions upstream and downstream 250 bp, and 
requiring 1000 bp space between two sites. The top 200 sites are reported. 
 

S3.1.2  Affymetrix Group 

S3.1.2.1  Cell Lines 
The HL-60 acute myeloid lymphoma cell line was obtained from the American Type Culture 
Collection facility.  Cell were maintained in Iscove's Modified Dulbecco's Medium with 
GlutaMAX (Invitrogen) containing 20% Fetal Bovine Serum (Invitrogen) and 1X 
penicillin/streptomycin (Invitrogen) in a humidified 37°C incubator with 5% CO2.  For each of 
the three biological replicates, cultures were seeded at approximately 3x105 cells/ml and were 
induced with a final concentration of 1 μM all-trans-retinoic-acid (ATRA – purchased from 
Sigma) after 2 days of growth when cultures had achieved a density of 106 cells/ml.  These 
cultures (3 liters total for each time point) were then incubated for 2, 8, and 32 hours with ATRA 
or untreated (0 hour) before harvesting.  Both cell viability and recovery after ATRA treatment 
were assessed by Trypan Blue exclusion as well as determining cell density by counting an 
aliquot on a hemocytometer. 
 

S3.1.2.2  CD11b Cell Surface Antigen Labeling 
ATRA treated HL-60 cells were monitored for differentiation by detection of CD11b expression.  
Triplicate samples for each time point in each biological replicate (106 cells per sample) were 
centrifuged at 300xg for 10 minutes, media aspirated, and resuspended in 100 μl Label Buffer 
(1x Hanks Buffered Saline, 2% filtered Fetal Bovine Serum, and 0.01% sodium azide).  Cells 
were blocked with 5 μl unlabeled isotype matched mouse IgG1κ (BD Pharmingen) on ice for 15 
minutes, then washed with 2 ml ice cold Label Buffer.  Cells were pelleted at 300xg for 10 
minutes and resuspended in 100 μl Label buffer.  Five μl of anti-CDllb antibodies or isotype 
controlled mouse IgG1κ coupled to Alexa 488 (BD Pharmingen) were added to each sample and 
incubated on ice for 30 minutes.  Cells were washed twice in 2 ml Label Buffer and fixed with 
2% formaldehyde in PBS.  Samples were stored packed in ice and in the dark until analyzed by 
flow cytometry using a FACScaliber bench top cell sorter (BD Biosciences) counting 10,000 
events for each triplicate sample.  IgG1κ labeled samples were used to determine the amount of 
background fluorescence and non-specific binding.  Percent of CD11b positive cells were 
quantitated using Cellquest Pro software. 
 

S3.1.2.3  Nitroblue Tetrazolium (NBT) Reduction Assay 
NBT reduction assays were performed in triplicate for each timepoint for each of the 3 biological 
replicates.  Approximately 5x105 were collected by centrifugation at 300xg for 10 minutes at 
room temperature using a swing bucket rotor.  Media was aspirated away and cells were 
resuspended in 100 μl of growth media.  An equal volume of NBT (Roche) diluted 1:50 in PBS 
was then added to each sample containing 200 ng PMA (Calbiochem).  Samples were incubated 
at 37°C for 30 minutes at which time cells were placed on microscope slides and cells were 
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scored as either positive or negative based on the presence of dark blue formazin deposites.  At 
least 1000 cells were counted for each of the triplicate samples and percent NBT positive cells 
was determined for each time point as a measure of differentiation. 
 

S3.1.2.4  RNA preparation 
Approximately 5x108 cells per time point per biological replicate were harvested by 
centrifugation and total RNA was purified using RNeasy RNA extraction kit (Qiagen) as per 
manufacturer’s specifications. Each sample required three columns in order to recover the 
majority of the RNA.  Poly-A RNA was then obtained from the total RNA using Oligo-tex 
purification kits (Qiagen) as per manufacturer’s instructions. 
 

S3.1.2.5  Formaldehyde Crosslinking and Soluble Chromatin Preparation 
Cell culture remaining after removing cells for RNA processing was crosslinked using 1% final 
concentration formaldehyde for 10 minutes at room temperature with gentle swirling.  The 
formaldehyde was quenched using 1/20 culture volume 2.5 M glycine at room temperature for 5 
minutes.  Cells were pelleted at 500xg for 8 minutes, washed twice with ice cold PBS, and 
washed three times in Run-on lysis buffer (10 mM Tris pH 7.5, 10 mM NaCl, 3 mM MgCl2, and 
0.5% NP40).  Recovered nuclei were aliquoted, flash frozen in liquid nitrogen and stored at –
80°C until use.  Micrococcal nuclease (MNase) digestions were then performed such that there 
were the equivalent of approximately 2x108 cells per digestion.  Frozen pellets were resuspended 
to a volume of 1.5 ml MNase reaction buffer (10 mM Tris pH 7.5, 10 mM NaCl, 3 mM MgCl2, 1 
mM CaCl2, 4% NP40, 1 mM PMSF). Fifteen units of MNase (USB) were added to each reaction, 
samples were incubated at 37°C for 10 minutes, and the digestion halted by the addition of 30 μl 
200 mM EGTA. Forty μl of 100 mM PMSF, 150 μl of protease inhibitors (Roche mini-EDTA 
free inhibitor pellet resuspended in 500 μl MNase reaction buffer), 200 μl 10% sodium dodecyl 
sulfate, and 80 μl 5 M NaCl were subsequently added to each reaction. Next, samples were 
sonicated using a Branson Sonifier-450 four times for 1 minute at a power level setting of 4 and 
60% duty. The cellular debris were then cleared by centrifugation on high speed for 10 minutes 
at 4oC.  The supernatant was then removed to a new tube, aliquoted to volumes equivalent to 
2x107 cells per tube, flash frozen on liquid nitrogen, and stored at -80°C until use. For each 
sample, a small aliquot was treated with Pronase, the crosslinks reversed, and run on a 1% TAE-
agarose gel to monitor MNase digestion.  The average size fragments for each chromatin 
preparation were 500-1000 base pairs.  
 

S3.1.2.6  Chromatin Immunoprecipitation 
Chromatin immunoprecipitation were performed using a volume of soluble chromatin equivalent 
to 2x107 cells.  Chromatin was diluted 1:5 using IP Dilution Buffer (20mM Tris pH 8.0, 2mM 
EDTA, 1% TritonX-100, 150mM NaCl, and Roche mini-EDTA free inhibitor pellet) and pre-
cleared with a mix of Protein A (Amersham) and Protein G (Amersham) sepharose beads for 15 
minutes at 4°C on a rotator.  The pre-cleared diluted chromatin was then incubated with the 
appropriate amount of antibody of interest overnight at 4°C (see below).  Fifty μl of protein A/G 
mixed sepharose was then added to each IP and incubated for 3 hours at 4oC. IPs were washed in 
1 ml Dilution Buffer, centrifuged, the beads resuspended in 0.7 ml Dilution Buffer and 
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transferred to a Spin-X centrifuge column (Costar).  Samples were washed for 5 minutes at room 
temperature on a rotator using the following buffers respectively: ChIP Wash Buffer 1 (20mM 
Tris pH 8.0, 2mM EDTA, 1% TritonX-100, 0.1% SDS, 150mM NaCl, 1mM PMSF), ChIP Wash 
Buffer 2 (20mM Tris pH 8.0, 2mM EDTA, 1% TritonX-100, 0.1% SDS, 500mM NaCl, 1mM 
PMSF), ChIP Wash Buffer 3 (10mM Tris pH 8.0, 1mM EDTA, 0.25 M LiCl, 0.5% NP-40, 0.5% 
deoxycholate), and 3 times in TE.  Samples were eluted in 200 μl Elution buffer (25mM Tris pH 
7.5, 5mM EDTA, 0.5% SDS) at 65°C for 30 minutes.  Eluates were collected by centrifugation 
and an additional 100 ml Elution Buffer was washed through the column. Pronase was added to 
each sample and to pre-cleared input chromatin samples to a final concentration of 1.5 μg/μl.  
Samples were incubated at 42°C for 2 hours and at 65°C for at least 6 hours to reverse the 
crosslinks. Precipitated DNA was then recovered using QIAquick PCR purification columns 
(Qiagen) as per manufacturer specifications and eluted in 100 μl 10 mM Tris pH 8.5 
 

S3.1.2.7  Antibodies 
The following antibodies were used per individual IP for the ChIP-Chip experiments:  15 μl anti-
tetraacetylated H4 (Upstate 06-866); 3 μg anti-Brg1 (Santa Cruz sc-10768); 3 μg anti-CTCF 
(Abcam 10571); 12 μl anti-diacetylated H3 (Upstate 06-599); 3 μg anti-Pu.1 (Santa Cruz sc-
22805); 3 μg anti-Retinoic acid receptor alpha (Santa Cruz sc-551); 4 μg anti-TFIIB (Santa Cruz 
sc-225); 4 μg anti-p300 (Santa Cruz sc-584); 4 mg anti-C/EBPε (Santa Cruz sc-158); 3 mg anti-
trimethylated H3K27 (a gift from Thomas Jenuwein) 
 

S3.1.2.8  Random Primer Amplification 
In the first round of amplification (Round A), 30 μl of IP or Input samples, 10 μl dH2O, 12 μl 5X 
Sequenase Buffer (USB), and 4 μl of 40 μM Primer A 
(GTTTCCCAGTCACGATCNNNNNNNNN) were mixed in 0.2 ml thin wall PCR tubes.  
Samples were heated to 95°C for 4 minutes and then flash frozen in liquid nitrogen. The samples 
were then transferred to 10°C for 5 minutes during which time 0.5 μl 10 mg/ml BSA, 3 μl 0.1 M 
DTT, 1.5 μl 25 mM dNTPs, and 1.5 μl Sequenase (USB) diluted 1:10 (1.3 U/μl final) were 
added.  Temperature was then raised 1 degree every 20 seconds until it reached 37°C where it 
was held for an additional 8 minutes. This entire process was then repeated with the exception 
that only sequence was added during the 5 minutes at 10oC. Next the samples were purified 
using QIAquick PCR purification columns (Qiagen) as per manufacturer specifications and 
eluted in 100 μl 10 mM Tris pH 8.5.  In the next round of PCR amplification (Round B), 85 μl 
“Round A” DNA was mixed with 2 μl 100 μM Primer B (GTTTCCCAGTCACGATC) in a 
standard 100 μl PCR reaction.  Samples were then amplified using the following cycler program: 
95°C for 3 minutes then 30 cycles of 95°C for 30 seconds, 40°C for 30 seconds, 50°C for 30 
seconds, and 72°C for 1 minute.  The resulting amplified material was then purified using 
QIAquick PCR purification columns and eluted in 100 μl 10 mM Tris pH 8.5.  One last round of 
PCR amplification was performed using 90 μl of “Round B” to set up three 300 μl standard PCR 
reactions using Primer B similar to Round B with the exception that 25 cycles are performed 
instead of 30 cycles.  The three PCR reactions were then combined, purified using 10 QIAquick 
PCR purification columns, and eluted in a total of 1 ml 10 mM Tris pH 8.5.  Eluted samples were 
precipitated on ice using 1/10 volume NaOAc pH 5.2 and 3 volumes of 100% EtOH.  
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Precipitated pellets were washed once with 70% EtOH, dried, and resuspended in 40 μl 10 mM 
Tris pH 8.5. 
 

S3.1.2.9  Microarray Hybridizations and Generation of Maps of Binding Sites 
The precipitated amplified DNA from the chromatin immunoprecipitation experiments was 
fragmented with DNAse I to an average size of 100 nucleotides, end labeled with biotin using 
terminal transferase and hybridized to ENCODE tiling oligonucleotide microarrays (Affymetrix 
cat. No. 900544) at concentration of 10 μg/ml or 2 μg per array as described earlier25, 56.  Arrays 
were scanned on an in-house made scanner with a laser spot size of 3.5 μm and pixel size of 1 
μm. The procedure for generation of binding of sites is described in Ghosh et al84. 
 

S3.1.3  Farnham Data -UC Davis-Farnham lab methods 

S3.1.3.1  Chromatin Immunoprecipitation (ChIP) Assays 
HeLa cells were grown and crosslinked with formaldehyde as previously described85. A 
complete protocol can be found on our website at http://genomics.ucdavis.edu/farnham/ and in 
Oberley et al86. A mixed monoclonal antibody against E2F1 (KH20/KH95) was purchased from 
Upstate Biotechnology Incorporated (Lake Placid, NY), a rabbit polyclonal antibody against 
MYC (N-202; cat#sc-764x was purchased from Santa Cruz Biotechnology, rabbit IgG (cat# 210-
561-9515) was purchased from Alpha Diagnostic, and the secondary rabbit anti-mouse IgG (cat# 
55436) was purchased from MP Biomedicals. For analysis of the ChIP samples prior to amplicon 
generation, immunoprecipitates were dissolved in 50 µl of water, except for input samples that 
were dissolved in 100 µl. Each PCR reaction mixture contained 2 µl of immunoprecipitated 
DNA, 1X Taq reaction buffer (Promega, Madison, WI), 1.5 mM MgCl2, 50 ng of each primer, 
1.7 U of Taq polymerase (Promega, Madison, WI), 200 µM deoxynucleotide triphosphates 
(Promega, Madison, WI) and 1 M betaine (Sigma, St, Louis, MO) in a final reaction volume of 
20 µl. PCR mixtures were amplified for 1 cycle of 95°C for 5 min, annealing temperature of the 
primers for 5 min, and 72°C for 3 min followed by 31-33 cycles of 95°C for 1 min, annealing 
temperature of the primers for 1 min, and 72°C for 1 min and 1 cycle of 72°C for 7 min. PCR 
products were separated by electrophoresis through 1.5% agarose gels and visualized by 
ethidium bromide intercalation.  
 

S3.1.3.2  Amplicon Preparation 
Briefly, two unidirectional linkers oligoJW102 (5’gcg gtg acc cgg gag atc tga att c 3’) and 
oligoJW103 (5’ gaa ttc aga tc 3’) were annealed and blunt-end ligated to the ChIP samples. 
Amplicons were created by PCR; each sample consisted of 5 µl 10X Taq polymerase buffer, 7 µl 
2mM dNTPs, 3 µl MgCl2, 6.5 µl betaine, 2.5 µl oligoJW102 (20µM), 1 µl Taq (Promega, 
M1861), and 25 µl of the blunted and ligated chromatin. PCR was run with one cycle at 55°C for 
2 min, 72°C for 5 min, and 95°C for 2 min. 15 cycles were then run at 95°C for 0.5 min, 55°C 
for 0.5 min, and 72°C for 1 min. Finally the products were extended at 72°C for 4 min, then held 
at 4°C until purified using the Qiaquick PCR purification kit according to the manufacturer’s 
instructions. 2.5 µl of the first round of amplicons were used as described above to generate a 
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second round of amplicons.  DNA was quantitated and stored -20°C until sent to NimbleGen. 
For more details, see http://genomics.ucdavis.edu/farnham/ and Oberley et al86.  
 

S3.1.3.3  Array Hybridization 
High density ENCODE oligonucleotide arrays were created by NimbleGen Systems (Madison, 
WI, USA) and contained ~380,000 50mer probes per array, tiled every 38 bp. The regions 
included on the arrays encompassed the 30 MB of the repeat masked ENCODE sequences, 
representing approximately 1% of the human genome. The labeling of DNA samples for ChIP-
chip analysis was performed by NimbleGen Systems, Inc. Briefly, each DNA sample (1 µg) was 
denatured in the presence of 5'-Cy3- or Cy5-labeled random nonamers (TriLink Biotechnologies, 
San Diego) and incubated with 100 units (exo-) Klenow fragment (NEB, Beverly, MA) and 
dNTP mix [6 mM each in TE buffer (10 mM Tris/1 mM EDTA, pH 7.4; Invitrogen)] for 2 h at 
37°C. Reactions were terminated by addition of 0.5 M EDTA (pH 8.0), precipitated with 
isopropanol, and resuspended in water. Then, 13 µg of the Cy5-labeled ChIP sample and 13µg of 
the Cy3-labeled total sample were mixed, dried down, and resuspended in 40 µl of NimbleGen 
Hybridization Buffer (NimbleGen Systems) plus 1.5 µg of human COT1 DNA. After 
denaturation, hybridization was carried out in a MAUI Hybridization System (BioMicro 
Systems, Salt Lake City) for 18 h at 42°C at the NimbleGen Service Laboratory. The arrays were 
washed using NimbleGen Wash Buffer System (NimbleGen Systems), dried by centrifugation, 
and scanned at 5-µm resolution using the GenePix 4000B scanner (Axon Instruments, Union 
City, CA). Fluorescence intensity raw data were obtained from scanned images of the 
oligonucleotide tiling arrays using NIMBLESCAN 2.0 extraction software (NimbleGen 
Systems). For each spot on the array, log2-ratios of the Cy5-labeled test sample versus the Cy3-
labeled reference sample were calculated. Then, the biweight mean of this log2 ratio was 
subtracted from each point; this procedure is approximately equivalent to mean-normalization of 
each channel. Sites bound by E2F1 and Myc were identified using the peak calling algorithm 
described in Bieda et al19 and available at http://genomics.ucdavis.edu/farnham/. 
 

S3.1.4  Sanger Group (PCR Arrays) 
We assayed H3k4me1, H3k4me2, H3k4me3, H3Ac, and H4Ac across ENCODE in both 
GM06990 cells and Hela S3 cells using a modified chromatin immunoprecipitation followed by 
microarray read-out (‘chip-on-chip’) procedure16. 

S3.1.4.1  Generation of chromatin immunoprecipatation (ChIP) samples 
Human cell line GM06990 (CEPH/UTAH PEDIGREE 1331) was cultured in RPMI640, 15% 
fetal calf serum, 1% penicillin-streptomycin and 2 mM L-glutamine. Human cell line HeLa-S3 
was cultured in Joklic’s DMEM, 5 % newborn bovine serum by the National Cell Culture Center 
Minneapolis, USA. 108 cells were collected by centrifugation, resuspended in 50 ml pre-warmed 
serum free media in a glass flask. Formaldehyde (BDH) was added to final concentrations of 
0.37 or 1%. After incubating the cells for 10 minutes with gentle agitation at room temperature, 
glycine (Sigma) was added to a final concentration of 0.125M followed by again incubating for 5 
minutes at RT with agitation.  Cells were collected at 4°C, resuspended in 1.5 ml ice-cold PBS 
and centrifuged at 2000 rpm for 5 min at 4°C (Sorval Heraeus). The cell pellet was resuspended 
in ~1.5X pellet volume of cell lysis buffer (10mM Tris-HCl pH 8.0, 10mM NaCl, 0.2% Igepal 
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CA-630, 10mM sodium butyrate, 50µg/ml PMSF, 1µg/ml leupeptin) and incubated for 10 
minutes on ice. The cell nuclei were collected by centrifugation at 2500 rpm for 5 minutes at 
4°C. The nuclei were resuspended in 1.2 ml of nuclear lysis buffer (NLB 50mM Tris-HCl pH 
8.1, 10mM EDTA, 1% SDS, 10mM sodium butyrate, 50µg/ml PMSF, 1µg/ml leupeptin) and 
incubated on ice for 10 minutes. After adding 0.72 ml of immunoprecipitation dilution buffer 
(IPDB 20mM Tris-HCl pH 8.0, 150mM NaCl, 2mM EDTA 1% Triton X-100, 0.01% SDS, 
10mM sodium butyrate, 50µg/ml PMSF, 1µg/ml leupeptin) the chromatin was transferred to a 
5ml tube (falcon) and sheared to a fragment size of ~ 500 bp by sonication (Branson sonifier 
using settings of time: 8 min, amplitude: 16 %, pulse on 0.5 s, pulse off 2.0 s, 450 digital,). 
During sonication samples were cooled in an ice water bath. Debris was removed from the 
sheared chromatin by centrifugation in a cooled bench centrifuge (Eppendorf) at 14000 rpm for 5 
minutes at 4°C. The supernatant was diluted with 4.1 ml of IPDB to a final ratio of NLB:IPDB 
of 1:4. The chromatin was precleared by adding 100µl of normal rabbit IgG (Upstate) and 
incubating for 1 hour at 4°C on a rotating wheel. 200 µl of homogeneous protein G-agarose 
suspension was added (Roche) and incubation continued for 3 hours to overnight at 4°C on a 
rotating wheel. The protein G-agarose was spun down at 3000 rpm for two minutes at 4°C. 1.35 
ml of supernatant (chromatin) was used to set up each ChIP assay while 270 µl were used as 
input control. Ten micrograms of antibody was used in each ChIP assay. Antibodies used were 
di-acetylated histone H3 (06-599, Upstate), tetra-acetylated histone H4 (06-866, Upstate), 
histone H3 mono-methyl lysine 4 (ab8895, Abcam), histone H3 di-methyl lysine 4 (ab7766, 
Abcam), histone H3 tri-methyl lysine 4 (ab8580, Abcam). The chromatin and antibody were 
incubated on a rotation wheel overnight at 4°C, then 100 µl of homogeneous protein G-agarose 
suspension was added (Roche) and incubation continued for 3 hours. The protein G-agarose was 
spun down and the pellet washed twice with 750 µl of IP wash buffer 1 (20 mM Tris-HCl pH 
8.1, 50 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.01% SDS), once with 75 EPAL CA630, 
1% deoxycholic acid) and twice with 10 mM Tris-HCl 1 mM EDTA pH80 µl of IP wash buffer 
2 (10 mM Tris-HCl pH 8.1, 250 mM LiCl, 1 mM EDTA, 1% IG.0. The immune complexes were 
twice eluted from the beads by adding 225 µl of IP elution buffer (100mM NaHCO3, 0.1% 
SDS).  After adding 0.2 µl of RNase A (10 mg/ml, ICN) and 27 µl of 5M NaCl to the combined 
elutions and adding 0.1µl of RNAse A and 16.2 µl of 5M NaCl to the input sample, the samples 
were incubated at 65°C for 6 hours. Then 9 µl of proteinase K (10 mg/ml, Invitrogen) was added 
and the samples incubated at 45°C overnight. Immediately before the DNA was recovered using 
phenol chloroform extraction, 2 µl tRNA (5 mg/ml stock/ Invitrogen) was added. The aqueous 
layer was extracted once with chloroform. Then 5 µg of glycogen (Roche), 1 µl of tRNA (5 
mg/ml Invitrogen), 50 µl of 3M sodium acetate pH 5.2 and 1.25 ml of ice-cold ethanol was 
added to precipitate the DNA at -20°C over night. The DNA pellets were washed with 70% 
ethanol, air dried and resuspended in 100 µl of water for input samples and 50 µl of water for 
ChIP samples. 

S3.1.4.2  Fluorescent DNA labeling, microarray hybridization and data analysis 
Fluorescently labelled DNA samples were prepared using a modified Bioprime labelling kit 
(Invitrogen) in 150 µl reaction volumes containing 450 ng Input DNA or 40% of ChIP DNA, 
dNTPs (0.2 mM dATP, 0.2 mM dTTP, 0.2 mM dGTP, and 0.1 mM dCTP), 0.01 mM Cy5/Cy3 
dCTP (GE Healthcare) , 60 μl 2.5x random primer solution (750 μg/ml, Invitrogen) and 3 μl of 
Klenow fragment (Invitrogen) . Input DNA samples were labeled with Cy5, and ChIP DNA 
samples were labelled with Cy3 over night at 37°C. Labelling reactions were purified using 

doi: 10.1038/nature05874    SUPPLEMENTARY INFORMATION

www.nature.com/nature 68



 

 

Micro-spin G50 columns (Pharmacia-Amersham) in accordance with the manufacturer's 
instructions. Input and ChIP sample were combined and precipitated with 3 M sodium acetate 
(pH 5.2) in 2.5 volumes of ethanol with 135 µg human Cot DNA (Invitrogen). The DNA pellet 
was resuspended in 80μl hybridization buffer containing 50% deionized formamide (Sigma), 10 
mM Tris-HCl (pH 7.4), 5% dextran sulphate, 2× SSC, 0.1% Tween-20. Two combined labeling 
reactions were denatured for 10 minutes at 100°C, snap frozen on ice and used for one 
microarray hybridisation. Microarrays were hybridized on an automatic hybridization station 
(HS4800, Tecan) for 45h at 37°C with medium agitation, washed 10 times for 1 minute with 
PBS 0.05% Tween20 (BDH) at 37°C, 5 times for 1 minute with 0.01x SSC at 52°C, 10x 1 
minutes with PBS 0.05% Tween20 at 23°C, followed by a final wash with HPLC-grade water 
(BDH) at 23°C and drying under nitrogen flow for 4 minutes.  Microarrays were scanned using a 
ScanArray 4000 confocal laser-based scanner (Perkin Elmer). Mean spot intensities from images 
were quantified using ScanArray Express (Perkin Elmer) with background subtraction. Spots 
affected by dust were manually flagged as “not found” and subsequently excluded from the 
analysis. 

S3.1.4.3  ENCODE tiling array construction 
The final Encode array spanned 23.8 Mb and contained 24005 array elements (average size 992 
bp). Primers pairs used to amplify PCR products for the arrays were designed using primer 3 
including repetitive elements where possible. (The primer sequences for amplicons used as array 
elements are available at ftp://ftp.sanger.ac.uk/pub/encode/microarrays/). In order to generate 
arrays containing single-stranded array elements, all amplicons used in this study were prepared 
and printed on arrays as previously described (see Dhami et al87 and 
www.sanger.ac.uk/Projects/Microarrays/arraylab/methods.shtml). All PCR products were 
prepared as follows. A 5’-(C6) amino-link was added to all forward primers. The primer pairs 
(final concentration 0.5 µM) were used to amplify PCR products in a 60-µl final volume PCR 
containing 50 mM KCl, 5 mM Tris HCl (pH 8.5), 2.5 mM MgCl2, 10 mM dNTPs (Pharmacia), 
0.625 U Taq polymerase (Perkin Elmer), and 50 ng of human genomic DNA (Roche). The PCR 
products were amplified with the following program: 1x 5 min 95°C, 35 x 95°C 1.5 min, 65°C 
1.5 min (-0.3°C per cycle), 72°C 3 min, 1x 72°C 5 min. For arraying of PCR products, spotting 
buffer was added at final concentrations of 0.25 M sodium phosphate buffer pH 8.5 and 
0.00025% sodium sarkosyl (BDH). The PCR products were filtered through multiscreen-GV 96-
well filter plates (Millipore), aliquoted into 384-well plates (Genetix), and were arrayed onto 
Codelink slides (GE) in a 48-block format using a Microgrid II arrayer (Biorobotics/Genomic 
Solutions). Slides were processed to generate single-stranded array elements, as described at 
http://www.sanger.ac.uk/Projects/Microarrays/, and were stored at room temperature until 
hybridized. 

S3.1.4.4  Data processing for analysis 
The data of the ratio of the background corrected ChIP signal divided through the background 
corrected input signal, both globally normalised were used for the HMM analysis. Ratios of 
duplicated spots were averaged. Ratios of spots defined as “not found” and ratios with a value 
below zero were excluded from the analysis and also excluded from the median track of 
technical replicates. Each median track of technical replicates was automatically generated with 
an individual R script (i.e. 
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ftp://ftp.sanger.ac.uk/pub/encode/H3K4me3_GM06990_2/H3K4me3_GM06990_2.R) which 
combines only positive values of technical replicates not classified as “not found”. 
 

S3.1.4.5  Comprehensive annotation of peaks using hidden Markov model analysis 
A two-state HMM3 was used to analyze the Sanger ChIP-chip data. The states of the HMM 
represent regions of the tile path corresponding to locations either consistent or inconsistent with 
antibody binding. The emission probabilities of the states are derived from the probability that a 
point is part of a normal distribution fitted from the 45% of the data with the lowest enrichment 
values. The fitted distribution is calculated separately for each of the ENCODE regions using the 
Levenberg-Marquart curve-fitting technique. The optimal state sequence for the observed data 
was calculated from the HMM using the Viterbi algorithm. The resulting list of tiles assigned to 
the state consistent with antibody binding was post-processed to develop a final hit list, which 
combined positive tiles within 1000bp of each other into “hit regions.” The score of each hit 
region was determined by taking the summation of the median enrichment values of the tiles in 
the contiguous portions (i.e. the area under the peak). The center position of the PCR tile with the 
highest enrichment value in the hit region was deemed the center of the peak. 
 

S3.1.4.6  Identification of significant peaks ( p<0.01 level) 
For the purposes of our analyses we defined significant peaks as those identified using the 
approach described above wherein the peak signal exceeded the 99th% confidence bound on 
outliers relative to the global distribution of each mark. To determine the 99% confidence bound, 
we analyzed log(2)-transformed microarray signal intensity ratios and computed the 99th 
percentile of values below log(2)=0. Such ratio values were considered to signify experimental 
noise. A standard assumption is that this noise is symmetric about the log(2)=0 baseline. We 
therefore reflected the 99th percentile values about the baseline for each mark. This established 
an empirical 99% confidence bound on outliers, which is equivalent to a p<0.01 threshold. We 
then identified, for each histone mark, the HMM-derived signal peaks in which the maximum 
signal exceeded the p<0.01 level. 
 

S3.1.5  UT Austin ChIP-chip methods 

S3.1.5.1  ChIP protocol for c-Myc and E2F4 
Briefly, cells were cross-linked by addition of formaldehyde (1 % final concentration) directly to 
tissue culture plates for 7 min at room temperature. Cross-linking was terminated by adding 
glycine to a final concentration of 125 mM. Cells were washed with cold phosphate-buffered 
saline (PBS) containing PMSF, scraped off the plates, collected by centrifugation and washed 
again. After centrifugation, the pellet was resuspended in SDS lysis buffer (1 % SDS, 10 mM 
EDTA, 50 mM Tris-Cl pH 8.1, plus protease inhibitors) and incubated at room temperature for 
20 min. Cells were sonicated on ice and centrifuged at 12000 rpm at 4 °C for 10 min. 10x ChIP 
dilution buffer (0.1 % SDS, 1 % Triton X-100, 2 mM EDTA, 20 mM Tris-Cl pH 8.1, 150 mM 
NaCl, plus protease inhibitors) was added to the collected supernatant. Sample was pre-cleared 
with protein A-agarose beads (previously washed with 10x ChIP dilution buffer) at 4 °C for 1 hr. 
Precleared chromatin was incubated with the corresponding specific antibody (anti-e2f4 antibody 
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sc-1082x, Santa Cruz for E2F4 and anti-myc antibody sc-764x, Santa Cruz for c-Myc) at 4 °C 
overnight. For the mock IP controls, the antibody was left out. Pre-washed protein A-agarose 
beads were added and protein-DNA complexes were recovered after a 2 hour incubation at 4 °C. 
Immunoprecipitated complexes were successively washed with Lowsalt wash buffer (0.1 % 
Deoxycholate, 1 % Triton X-100, 1 mM EDTA, 50 mM HEPES pH 7.5, 150 mM NaCl), High-
salt wash buffer (0.1 % Deoxycholate, 1 % Triton X-100, 1 mM EDTA, 50 mM HEPES pH 7.5, 
500 mM NaCl), LiCl wash buffer (250 mM LiCl, 0.5 % NP-40, 0.5 % Deoxycholate, 1 mM 
EDTA, 10 mM Tris-Cl pH 8.1) and TE buffer (10 mM Tris-Cl pH 7.5, 1 mM EDTA). SDS 
elution buffer was added and incubated at 65 °C for 30 min to recover protein-DNA complexes. 
Crosslinks were reversed by incubating at 65 °C overnight. The sample was treated with RNase 
A and Proteinase K, extracted with phenol:chloroform and precipitated. The pellet was 
resuspended in 25 μl of water. We used this ChIP DNA for STAGE as well as ChIP-chip. 
 

S3.1.5.2  Hybridization of ChIP DNA to NimbleGen ENCODE arrays 
ChIP and mock IP DNA samples were amplified and labeled for hybridization essentially using 
NimbleGen's recommended protocols. DNA was amplified by ligation mediated PCR as 
previously described14. The ChIP samples were labeled with Cy5 while the mock IP samples 
were labeled with Cy3 and used as a reference channel in two colour hybridizations. 
Hybridization was carried out at NimbleGen's service facility (Madison, WI) using their standard 
procedures. Microarray scanning, data acquisition, normalization and peak finding was done 
essentially as previously described for NimbleGen arrays14. 
 

S3.1.6  UCSD ChIP-chip methods 
Three biological replicates of treated and untreated cells were crosslinked and harvested 
as previously described14 with the following modifications. Cells were crosslinked for 20 
minutes at 37ºC in normal culture media plus 1/10 volume formaldehyde crosslinking solution in 
large culture plates, followed by glycine quenching and PBS wash at room temperature. 
Crosslinked cells were collected by scraping and centrifugation.  Chromatin was isolated and 
fragmented as previously described14, though generating fragments of 1.5 Kbp in length required 
12 x 30 sec cycles of sonication. 
 

S3.1.6.1  Labeling procedure 
One microgram (μg) of LM-PCR products were used for labeling and hybridization to each 
array. One microgram of immunoprecipitated or total genomic LM-PCR DNA was mixed with 
40 μL of 1 μM Cy5 or Cy3 end labeled random prime nonamer oligonucleotides (TriLink 
Biotechnologies) respectively with the bacterial label control DNA in a total volume of 88 μL. 
The DNA and random primers were annealed by heating the sample to 98°C for 5 minutes and 
chilled quickly in ice water for 2-3 minutes.  Two microliter of (100 units) of E. coli DNA 
polymerase Klenow fragment and 10 μL of 10 mM equimolar  mixture of dATP, dTTP, dCTP, 
and dGTP were added to the annealed DNA sample and incubated at 37°C for 2 hours. The 
reaction was stopped by addition of 10 μL of 0.5 M EDTA. The labeled sample was ethanol 
precipitated by addition of 11 μL 5 M NaCl and 110 μL isopropanol. The precipitate was 
collected by centrifugation and the resulting labeled DNA pellet was washed with 80% ethanol 
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(V/V).  The pellet was dried under vacuum for 5-15 minutes to remove any remaining liquid, and 
the resulting dry labeled DNA pellet was resuspended in 10 μL dH2O. 
 

S3.1.6.2  Hybridization procedure and parameters 
Equal amounts (12 μg) of Cy5 and Cy3 labeled DNA samples were mixed, and 4 μL 2.94 nM 
Xenohybe control oligos (an equimolar mixture of 
5＇TTGCCGATGCTAACGACGCATCAGACTGCGTACGCCTAAGCAACGCTA3＇ and 
5＇CATTGCTGTGCGTACGCAGTCAAGTCGATCACGCTAACTCGTTGCGAC3＇) was 
added to the mixture. The sample was vacuum dried under low heat until the volume of sample 
was less than 14.4 μL.  The final volume of DNA was adjusted to 14.4 μL with dH2O. To this 
sample, 11.25 μL 20X SSC, 18 μL 100% formamide, 0.45 μL 10% SDS, 0.45 μL 10X TE 
(100mM Tris, 10mM EDTA), and 0.45 μL equimolar mixture of Cy3 and Cy5 labeled CPK6 
oligonucleotides 
(5＇TTCCTCTCGCTGTAATGACCTCTATGAATAATCCTATCAAACAACTCA3＇ and 
5＇TTCCTCTCGCTGTAATGACCTCTATGAATAATCCTATCAAACAACTCA3＇, 
respectively) were added to prepare the hybridization mixture. The hybridization sample was 
heated to 95 °C and was applied to the slide and incubated in the MAUI® Hybridization Station 
(BioMicro Systems, Inc.) at 42°C for 16-20 hours. 
 
The hybridized slides from the MAUI® Hybridization Station were washed once in Wash 1 
(0.2X SSC, 0.2% SDS, 0.1 mM DTT) for 10-15 seconds and followed by another wash in Wash 
1 (0.2X SSC, 0.2% SDS, 0.1 mM DTT) for 2 minutes with gentle agitation. The slides were then 
washed in Wash 2 (0.2X SSC and 0.1mM DTT) for 1 minute and followed by a wash in Wash 3 
(0.05X SSC and 0.1 mM DTT) for 15 seconds. The slides were dried by centrifugation 
 

S3.1.6.3  Measurement data and specifications 
The hybridized arrays were scanned on an Axon GenePix 4000B scanner (Axon Instruments 
Inc.) at wavelengths of 532nm for control (Cy3), and 635nm (Cy5) for experimental sample. 
PCR arrays were processed using GenePix 4.0 software while NimbleGen data were extracted 
from the scanned images using the NimbleScan 2.0 program (NimbleGen Systems, Inc.). The 
arrays were gridded using the automated gridding algorithm, and extracted in two channels using 
a mean intensity calculation of the interior of the gridded rectangular features upon extraction, 
and each pair of N probe signals were converted into a scaled log ratio using the function: 
 
R(i) = Log (Experimental(i) / Control(i)) 
 

S3.1.7  ChIP-PET method description 
HCT116 Cells before and after 5-FU treatment were cross-linked with 1 % formaldehyde for 10 
min at room temperature. Formaldehyde was inactivated by addition of 125 mM Glycine. 
Chromatin extracts containing DNA fragments of average size 500 bp were immunoprecipitated 
using anti-p53 DO1 monoclonal antibody (Santa Cruz Biotechnology). For all ChIP experiments, 
quantitative PCR analyses were performed in real time using ABI PRISM 7900 Sequence 
Detection System and SYBR Green master mix as described (Ng et al., 2003). Relative 
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occupancy values were calculated by determining the apparent immunoprecipitation efficiency 
(ratios of the amount of immunoprecipitated DNA over that of the input sample) and normalized 
to the level observed at a control region, which was defined as 1.0. The control region is a 279 bp 
region on chromosome 22 and is amplified using the following primers: 5’-
GGACTCGGAAGAGGTTCACCTTCGG-3’ and 5’-
GTCGCCTCCGCTTGCTGAACTCAATGC-3’.  
 
ChIP enriched DNA fragments were end-polished and ligated to the cloning vector pGIS3, which 
contains two MmeI recognition sites. The ligations were transformed into electrocompetent 
TOP10 bacterial cells to form the ChIP DNA library. Purified plasmid prepared from the ChIP 
DNA library was digested with MmeI, end-polished with T4 DNA polymerase to remove the 3’-
dinucleotide overhangs, and the resulting plasmids containing a signature tag from each terminal 
of the original ChIP DNA insert were self-ligated to form single-ditag plasmids. These were then 
transformed into TOP10 cells to form a “single-ditag library”. Plasmid DNA extracted from this 
library was digested with BamHI to release 50 bp paired end ditags. The PETs were PAGE-
purified, then concatenated and separated on 4-20% gradient TBE-PAGE. An appropriate size 
fraction (1 kb-2 kb) of the concatenated DNA was excised, extracted and cloned into BamHI-cut 
pZErO-1 (Invitrogen) to form the final ChIP-PET library for sequencing.  
 
PET sequences containing 18 bp from 5’ and 18 bp from 3’ ends of the original ChIP DNA 
fragments were extracted from the raw sequences obtained from the PET library, and mapped to 
human genome assembly (hg17). The process of PET extraction and mapping is essentially the 
same as previously described for cDNA analysis32. The specific mapping criteria are that both 
the 5’ and 3’ signatures must be present on the same chromosome, on the same strand, in the 
correct orientation (5’→3’), with minimal 17 bp match, and within 4 kb of genomic distance.  
 
Based on the genomic coordinates, we took the center point of each PET cluster to measure the 
distances to the nearest genes on both sides of the cluster. The genes that had a distance from the 
nearest clusters of ≤ 100 kb were selected. We did not intend to absolutely associate the PET 
clusters with particular genes, but tried to provide the distance of the clusters to the nearest genes 
along the chromosomes. 
 

S3.2 STAGE Data Generation Methods 
The ChIP protocol is described in section S3.1.5.1  
 
Generation of sequence tags from c-Myc ChIP DNA was carried out as described before88. 
Briefly, DNA was amplified using a biotinylated primer. We then essentially followed the 
LongSAGE protocol (http://www.sagenet.org/), but using amplified, biotinylated ChIP DNA as 
the starting material. Amplified DNA (1-2 µg) was digested with NlaIII. The terminal DNA 
fragments were bound to streptavidin-coated magnetic beads (Dynal) and separated into two 
tubes. After ligation with linker 1 or 2, which contain recognition sites for MmeI, the DNA 
fragments were released by MmeI digestion. The released tags were ligated to generate ditags. 
Ditags were amplified with nested primers, gel purified, and trimmed by NlaIII digestion. 
Trimmed ditags were gel purified, concatamerized by ligation, and cloned into the pZero 1.0 
vector (Invitrogen). Insert sizes were assayed in recombinant clones and clones containing at 
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least 10 ditags were sequenced. For STAGE analysis of STAT1, we amplified gel purified ditags 
from an intermediate step of the STAGE protocol using linker specific primers and sequenced 
the population of ditags directly using bead-based pyrosequencing (454 Inc.). Analysis of 
STAGE tags was carried out as described in Kim et al88 and Bhinge et al17. 

S3.3 DNaseI sensitivity and hypersensitivity: Data generation and analysis 

S3.3.1  Mapping of DNaseI hypersensitivity sites with Quantitative Chromatin 
Profiling 

DNaseI hypersensitive sites were mapped in ENCODE regions by applying the Quantitative 
Chromatin Profiling (QCP) methodology4 to the following cell types:  GM06990, HelaS3, 
CACO2, and SKnSH (all regions); K562, primary fetal and adult erythroblasts (ENm009); 
HepG2 and Huh7 (ENm003); PANC1, Calu3, primary large and small airway cells (ENm001); 
primary CD4 (ENm002).  DNaseI sensitivity ratios were obtained for ~118,000 PCR amplicons 
(avg. length ~225bp) tiled end-to-end across the ENCODE regions.  The tiling path covered 
approximately 86% of ENCODE sequence, encompassing all unique sequence and a large 
fraction of RepeatMasked sequence.  DNaseI hypersensitive sites (DHSs) were identified by 
computing a moving baseline using a LOESS approach; determining the 95% confidence bound 
relative to the moving baseline; and identifying outliers (=DHSs). 

S3.3.2  Mapping of DNaseI sensitivity and hypersensitivity with DNase/Array 
DNaseI sensitivity and DHSs were mapped across ENCODE regions in GM06990 and HeLa S3 
cells using the DNase/Array methodology5.   We cultured cells using standard protocols.  To 
remove background introduced from actively dividing cells, we synchronized cells in G1 by 
sequential temperature shifts.  Cells were placed on ice for 1hr prior to nuclear harvest.  We 
performed nuclear extraction, permeabilization, and DNaseI (Roche, Indianapolis, IN) digestions 
using a standard approach as described previously in Dorschner et al4.  To isolate chromatin-
specific and non-specific DNaseI fragments, we size fractionated both the control and treated 
samples using sucrose step gradients.  We pooled fractions with fragments smaller than 1.5kb 
and cleaned the DNA using Qiagen (Valencia, CA) PCR purification columns according to the 
manufacturer’s protocol.  Samples were labeled and hybridized to a Nimblegen DNA microarray 
comprising ~390,000 50-mer probes tiled with 12-bp overlap across non-RepeatMasked regions 
of the ENCODE regions.  DHSs were identified as peaks in the signal ratio that exceeded the 
P<0.01 level = 99th percent confidence bound on outliers.  Results were extensively validated 
using conventional DNaseI sensitivity assays. 

S3.3.3  Mapping of DNaseI hypersensitive sites with DNase-chip 
DNaseI hypersensitive sites and DNaseI sensitivity were mapped across ENCODE regions with 
the DNase-chip methodology2. 
 

S3.3.3.1  Preparation of DNase treated nuclei for DNase-chip 
Intact nuclei were isolated from GM06990 and Hela S3 cells using methods previously 
described2. Nuclei from 3 biological replicates were digested with 3 different optimized 
concentrations of DNaseI.   We blunt ended the DNase digested fragments using T4 DNA 
polymerase. Genomic DNA used for the random sheared reference control was purified from 
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each cell line (Gentra), vigorously pipetted and vortexed to generate randomly sheared DNA 
fragments, and blunt ended. 
 

S3.3.3.2  Capture of DNase digested ends for DNase-chip 
We ligated biotinylated linkers (5’ Biotin-GCG GTG ACC CGG GAG ATC TGA ATT C and 5’ 
Phos-GAA TTC AGA TC-3AmM) to DNase digested ends from DNase treated or randomly 
sheared DNA. The ligation mix was sonicated to generate 200-500 base pair fragments, and 
biotin-labeled fragments were enriched using streptavidin-coated magnetic beads (Dynal). The 
sonicated ends were made blunt using T4 DNA polymerase and ligated to nonbiotinylated 
linkers described above. The DNase captured material was amplified using ligation mediated 
PCR (5’ GCG GTG ACC CGG GAG ATC TGA ATT C). 
 

S3.3.3.3   Hybridization to tiled ENCODE microarrays and data analysis for DNase-chip 
We labeled ligation mediated PCR products from DNase treated and random sheared DNA with 
Cy3- and Cy5-dUTP. Labeled samples were mixed, supplemented with a blocking cocktail 
(tRNA, Cot1 DNA, Poly A+ RNA, and Poly T+ RNA), and hybridized to Nimblegen ENCODE 
tiled arrays for >20 hours (Maui). The ENCODE array has approximately 385,000 x 50mer 
oligos spaced approximately every 38 base pairs of unique sequence (NimbleGen). Slides were 
washed, scanned (Agilent), and signals were normalized using Nimblescan software. We 
averaged normalized ratio data (DNase:random) from 9 hybridizations (3 DNase concentrations 
and 3 biological replicates). We used the ratios to perform a chi-square test on sliding 500 base 
pair windows to identify regions with a higher than expected number of oligos in the top 5% of 
the log-ratio distribution (p-values <0.001). Analysis software was written in R (http://www.r-
project.org) and is available upon request. 
 

S3.3.4  Generation of a common set of DHS for GM06990 lymphoblastoid cells 
When applied to the same tissue type, the aforementioned methodologies have considerable 
overlap. Because the cell preparation procedures differ amongst the method, and because of 
minor intrinsic biological variability between preparations of the same cell type using the same 
methodology, some DHSs may be detected in one data set that are not present in the others. We 
therefore generated a common set of DHSs from lymphoblastoid cells (see section S3.3.5 ).  
First, thresholded all the individual DHS data sets at the P<0.01 level (i.e., we did not consider 
DHSs that did not contain signal or indensity ratios that exceeded their respective 99th percent 
confidence bound on outliers. We next performed a merging step in which overlapping DHSs 
were merged.  In cases where two DHSs in the common data set might be separated by less than 
200bp (approximately the size of a nucleosome plus linker DNA), these were merged into a 
single site. 
 

S3.3.5  Table in supplemental Excel streadsheet 
This table is included in the attached Excel spreadsheet on the worksheet labeled Section S3.3.5. 
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S3.4 FAIRE Data Generation methods 
Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE) was performed in foreskin 
fibroblast cells (CRL-2091).  Cells were grown to 90% confluence in 245 x 245 mm plates and 
fixed in 1% formaldehyde at room temperature for 1, 2, 4, or 7 minutes. Glycine was added to a 
final concentration of 125 mM, the cells were spun down at 2K rpm for 4 minutes, and washed 
twice with cold 1 X PBS containing 100 mM phenylmethylsulphonylflouride.  Cells were 
resuspended in 1 ml of lysis buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris-Cl 
(pH 8.0), and 1mM EDTA) for every 0.1 g of cells and subjected to five 1-minute sessions of 
glass bead disruption with 2 minutes on ice between sessions.   The extract was then sonicated 
for five sessions of 60 pulses (1 second on/1 second off, 15% amplitude), cooled for 2 minutes 
on ice between sessions. This yielded an average fragment size of 500 bp.  The extract was spun 
at 15K rpm for 1 minute to clear cellular debris.  An equal volume phenol/chloroform was added 
to the supernatant, vortexed, and spun at 15K rpm for 5 minutes.  The aqueous phase was 
recovered and an additional extraction was performed by adding 1 ml of TE to the organic phase, 
vortexing, and spinning at 15K rpm for 5 minutes.  An equal volume of phenol/chloroform was 
then added to the pooled aqueous sample, vortexed, and spun at 15K rpm for 5 minutes.  Sodium 
acetate was added to the to a final concentration of 0.3 M.  2X volumes of 95% ethanol was 
added and incubated at -20°C overnight.  The precipitated DNA was pelleted at 15K rpm for 5 
minutes, washed with 70% ethanol, and pelleted.  The DNA was dried in a speed-vac, 
resuspended in water, and were incubated at 65°C overnight.  2 μl of RNase A (100 μg/ml) was 
added and incubated at 37°C for 30 minutes.  DNA fragments recovered from the aqueous phase 
were amplified by ligation-mediated PCR, fluorescently labeled, and hybridized to high-density 
tiling arrays (NimbleGen Inc., Madison, WI), which cover the non-repetitive portion of the 
ENCODE regions at 38 bp resolution.  A more detailed description of the protocol and 
subsequent data analysis can be found in Giresi et al3. 

S3.5 Generation and categorization of 5' end clusters 
 
One of the goals within the ENCODE projects is to find 5' ends of genes and thereby the core 
promoter regions. The dataset described above and recent studies89 indicates that 5' ends of genes 
in many cases cannot be described as a single nucleotide position, but a cluster of closely located 
positions. 
 
There are many ways of defining such TSS clusters. In our approach we started with two sets of 
5' sites, those identified as the 5' ends of transcripts in the GENCODE annotation 
(ftp://genome.imim.es/pub/projects/GENCODE/data/TSS_to_share/GENCODE_all_TSS.gff) 
and those identified by either the CAGE or PET 5' end tag capture technologies 
(http://genome.ucsc.edu/encode/encode.hg17.html tables encodeGisRnaPetHCT116.bed, 
encodeGisRnaPetMCF7.bed, encodeGisRnaPetMCF7Estr.bed, encodeRikenCageMinus.bed, 
encodeRikenCagePlus.bed). In each set, sites located within 60 bp of each other and on the same 
strand were clustered. The 60 bp criterion was based on analyzing the distribution of distances 
between 5' end positions from the 5' and 3' map described above. Specifically, we investigated 
the distances between consecutive nucleotides labeled as TSS on the same strand by any of the 
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methods. The growth of the cumulative distribution of such distances drop rapidly at around 50-
70 nts (see Supplementary Figure 13). 
 

 
Supplementary Figure 13: Cumulative distribution of the shortest distances between 
consecutive nucleotides inferred as TSS on the same strand by GENCODE, CAGE and/or 
PETs.  The Y axis shows the fraction of the whole population of distances that are <= x 
nucleotides 

 
A single genomic coordinate was chosen to represent each cluster. For the GENCODE sites this 
was the most 5' site in the cluster and for the tag sites it was the site with the highest number of 
individual tags. There were 1730 GENCODE clusters and 6045 tag clusters.  
 
The two sets of clusters were merged and categorised roughly in order of confidence, by 
determining what type of annotated genomic feature supported their validity. A TSS cluster was 
considered supported if it lay within the interval +/- 100bp of the given feature. Category A 
comprised all the GENCODE 5' site clusters. Category B comprised those tag clusters supported 
by the 5' end of GENCODE exons (ftp://genome.imim.es/pub/other/GENCODE/data/havana-
encode/version02.2_14oct05/CHR_coord_hg17/global_files/44regions_CHR_coord.gtf.gz origin 
in 'VEGA_Antisense_val', 'VEGA_Known','VEGA_Novel_CDS','VEGA_Novel_transcript_val', 
'VEGA_Putative_val') on the same strand as the tag cluster but not supported by Category A 
clusters. Category C comprised those tag clusters not in the previous categories and supported by 
GENCODE exons on the opposite strand.  Category D comprised those tag clusters not in the 
previous categories and supported by any TxFrag 
(http://transcriptome.affymetrix.com/download/ENCODE/HS_v35/genes_transcripts/TARs_tran
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sfrags/union_TARs_transfrags.bed) or RxFrag 
(ftp://genome.imim.es/pub/projects/GENCODE/data/RxFrags/suppl_info/). Category E 
comprised those tag clusters not in the previous categories and supported by a CpG island 
(http://genome.ucsc.edu/encode/encode.hg17.html table cpgIslandExt) and Category F 
comprised the remaining, unsupported tag clusters. 
 
The Pvalue of the overlap between the Tag data and the supporting data was calculated using 
overlap statistics based on the Genome Structure Correction method (see Supplement S1.3 ).  
 

S3.5.1  Correlation of Singleton Tag clusters to other transcriptional evidence. 
 
The Transcription Start Sites (TSSs) defined by CAGE or DiTags can be defined by one or tags. 
Any technical false tags, or low level, random transcription is likely to provide single tag TSSs. 
To assess whether the classifications of TSSs in different evidence catagories were inflated by 
the presence of random, singleton tags, we repeated the statistical analysis of the overlap (within 
100bp, as for the global tag set) between only singleton Tag clusters and each source of 
supporting evidence. The Table below shows the P-value of seeing the evidence overlap by 
chance, using the GSC statistic (see Supplement S1.3 ) which conservatively handles 
heterogeneous distributions in the genome. 
 

Supplementary Table 10: Correlation of singleton tag clusters to other transcriptional 
evidence 

Evidence Type P-value to singleton clusters 
Sense GENCODE exon 1e-273 
Antisense GENCODE exon 1e-95 
TxFrag or RxFrag 1e-263 
CpG island 1e-313 
 
As the table shows, there is no evidence to support the hypothesis that most of the singleton 
clusters are randomly distributed around the genome with respect to any of these four 
classifications of evidence.  
 

S3.6 ChIP enrichment profiles for TSSs 
These plots show the curves in Figure 5 individually and without smoothing.  The x-axis is the 
relative distance to the nearest anchor (either TSSs or DHSs). The y-axis is the averaged ChIP 
signal at a certain distance to all anchors. For each plot the signal was first normalized with a 
mean of 0 and standard deviation 1. The signal of each probe in the ChIP-chip dataset was 
assigned a distance to its nearest anchor of a given class. Then all signals at the distance to all the 
anchors were averaged. In order to examine the significance of differences in signal intensity 
between positions proximal versus distal to anchors, P-values were calculated from two-sided 
Student's t-test between intensity of all probes within 10Kb range from any anchor and those 
within 1Kb range, or between outside 5Kb and within 1Kb. 
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A B  
-0.24, 0.23, p1=5.9e-05, p2=1.5e-48    -0.25, 0.16, p1=0.015, p2-1.8e-06 

C D  
-0.15, 0.14, p1=2.6e-62, p2=8.9e-77    -0.99, 1.24, p1=1.6e-51, p2=7.1e-13 

E F  
-0.3, 0.64, p1=6.8e-15, p2=4.4e-29     -0.14, 0.62, p1=0, p2=0 

Supplementary Figure 14: Aggregate H3K4me1 ChIP-chip signals of (A) GENCODE TSS, 
(B) novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 
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A B  
-0.27, 0.71, p1=0, p2=0     -0.32, 0.47, p1=0, p2=0 

C D  
-0.15, 0.21, p1=6.1e-32, p2=8.3e-33   -0.31, 3.87, p1=0, p2=0 

E F  
-0.23, 1.82, p1=1.7e-107, p2=3.5e-157   -0.18, 0.41, p1=1.2e-144, p2=7.7e-128 

Supplementary Figure 15: Aggregate H3K4me2 ChIP-chip signals of (A) GENCODE TSS, 
(B) novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 
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A B  
-0.25, 0.8, p1=0, p2=0      -0.26, 0.39, p1=1.3e-286, p2=0 

C D  
-0.12, 0.15, p1=3e-06, p2=1.6e-12    -0.33, 4.91, p1=0, p2=0 

E F  
-0.31, 1.32, p1=6e-67, p2=3.9e-90    -0.17, 0.2, p1=7.6e-05, p2=1.2e-16 

Supplementary Figure 16: Aggregate H3K4me3 ChIP-chip signals of (A) GENCODE TSS, 
(B) novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 
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A B  
-0.25, 0.85, p1=0, p2=0     -0.38, 0.58, p1=0, p2=0 

C D  
-0.14, 0.15, p1=8.3e-49, p2=3.4e-62    -0.01, 3.95, p1=0, p2=0 

E F  
-0.09, 1.59, p1=6.3e-87, 6.3e-119    -0.21, 0.31, p1=8.1e-107, p2=3.5e-68 

Supplementary Figure 17: Aggregate H3ac ChIP-chip signals of (A) GENCODE TSS, (B) 
novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 
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A B  
-0.2, 0.49, p1=0, p2=0      -0.22, 0.36, p1=1.5e-250, p2=0 

C D  
-0.14, 0.15, p1=2.3e-17, p2=5.5e-21    -0.29, 2.58, p1=0, p2=0 

E F  
-0.23, 0.9, p1=1.9e-38, p2=3e-49    -0.14, 0.21, p1=1.7e-43, p2=1.2e-41 

Supplementary Figure 18: Aggregate H3ac ChIP-chip signals of (A) GENCODE TSS, (B) 
novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 
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A B  
-0.19, 0.58, p1=3.4e-160, p2=9e261  -0.15, 0.32, p1=1e-81, p2=1.8e-112 

C D  
-0.09, 0.16, p1=3.3e-20, p2=2.6e-37   -0.12, 2.55, p1=5.5e-199, p2=5.3e-290 

E F  
-0.21, 0.82, p1=1.2e-33, p2=1.5e-50  -0.13, 0.44, p1=8.6e-68, p2=9.3e-78 

Supplementary Figure 19: Aggregate FAIRE signals of (A) GENCODE TSS, (B) novel 
TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  Below 
each plot are the y-min, y-max, and the p-values from two-sided t-tests between intensity of 
all displayed probes and those within 1Kb (p1), and between probes outside 5Kb and 
within 1Kb (p2). 
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A B  
-0.15, 0.85, p1=0, p2=0     -0.13, 0.38, p1=5.2e-164, p2=1.2e-296 

C D  
-0.11, 0.19, p1=2.9e-16, p2=1.8e-10     -0.16, 4.37, p1=0, p2=0 

E F  
-0.2, 1.31, p1=2.9e-63, p2=1.7e-105   -0.1, 0.35, p1=4.7e-45, p2=6e-50 

Supplementary Figure 20: Aggregate DNAseI signals of (A) GENCODE TSS, (B) novel 
TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  Below 
each plot are the y-min, y-max, and the p-values from two-sided t-tests between intensity of 
all displayed probes and those within 1Kb (p1), and between probes outside 5Kb and 
within 1Kb (p2). 
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A B  
-0.06, 0.49, p1=3.9e-07, p2=3.7e-13  -0.12, 0.68, p1=2.8e-11, p2=1.6e-24 

C D  
-0.13, 0.25, p1=0.0074, p2=0.001   -0.01, 0.4, p1=0.005, p2=0.0071 

E F  
0.13, 0.71, p1=0.041, p2=0.012   -0.16, 0.71, p1=3.7e-10, p2=1.4e-12 

Supplementary Figure 21: Aggregate CTCF ChIP-chip signals of (A) GENCODE TSS, (B) 
novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 
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A B  
-0.14, 0.81, p1=0, p2=0     -0.16, 0.5, p1=1.4e-293, p2=0 

C D  
-0.11, 0.18, p1=4.8e-25, p2=4.9e-25    -0.06, 3.46, p1=0, p2=0 

E F  
-0.06, 1.52, p1=1.8e-72, p2=1.6e-95   -0.17, 0.38, p1=5.8e-79, p2=2.5e-77 

Supplementary Figure 22: Aggregate cMyc ChIP-chip signals of (A) GENCODE TSS, (B) 
novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 

doi: 10.1038/nature05874    SUPPLEMENTARY INFORMATION

www.nature.com/nature 87



 

 

A B  
-0.22, 1.14, p1=0, p2=0     -0.28,0.74, p1=0, p2=0 

C D  
-0.09, 0.13, p1=3.9e-06, p2=2.6e-05    -0.14, 4.79, p1=0, p2=0 

E F  
-0.12, 2.18, p1=1.6e-124, p2=1.8e-162  -0.22, 0.19, p1-5.8e-60, p2=4.1e-107 

Supplementary Figure 23: Aggregate E2F1 ChIP-chip signals of (A) GENCODE TSS, (B) 
novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 
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A B  
-0.12, 0.44, p1=1.9e-157, p2=6e-263  -0.13, 0.35, p1=3.2e-155, p2=5.3e-294 

C D  
-0.09, 0.12, p1=8.4e-05, p2=1.3e-09  -0.2, 1.31, p1=5.6e-107, p2=7.2e-128 

E F  
-0.18, 0.7, p1=6.1e-25, p2=4.8e-25   -0.21, 0.18, p1=3.3e-31, p2=5.4e-44 

Supplementary Figure 24: Aggregate E2F4 ChIP-chip signals of (A) GENCODE TSS, (B) 
novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 
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A B  
-0.12, 1.03, p1=0, p2=0     -0.21, 0.98, p1=0, p2=0 

C D  
-0.21, 0.13, p1=5.5e-40, p2=3.7e-75  0.04, 1.72, p1=1.3e-212, p2=7.2e-226 

E F  
0.05, 1.89, p1=3.6e-103, p2=1e-126  -0.3, 0.16, p1=9e-165, p2=6.5e-246 

Supplementary Figure 25: Aggregate BAF155 ChIP-chip signals of (A) GENCODE TSS, 
(B) novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 
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A B  
-0.22, 0.48, p1=1.6e-155, p2=3e-253  -0.16, 0.22, p1=2e-85, p2=2.4e-159 

C D  
-0.12, 0.18, p1=0.00076, p2=3.1e-07   -0.31, 2.8, p1=1.4e-238, p2=0 

E F  
-0.33, 0.32, p1=8.4e-15, p2=2.1e-20  -0.14, 0.24, p1=2.8e-08, p2=0.055 

Supplementary Figure 26: Aggregate RNA PolII ChIP-chip signals of (A) GENCODE TSS, 
(B) novel TSS, (C) unsupported tags, (D) GeneOnCpG, (E) GeneOffCpG, (F) distal DNS.  
Below each plot are the y-min, y-max, and the p-values from two-sided t-tests between 
intensity of all displayed probes and those within 1Kb (p1), and between probes outside 
5Kb and within 1Kb (p2). 
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S3.7 Symmetrical Signal Analysis 
All of the ChIP-chip analysis shows binding peaks both upstream and downstream of features 
such as the transcription start sites.  These binding patterns are not exactly symmetrical on each 
side of the features, but there does not appear to be a preference for the upstream side of the TSS.   
 
In an effort to determine if this effect is an artifact of the array platform or of the analysis, we 
first assume that the DNA is sheared randomly with respect to the location of the DNA-protein 
complex.  We also assume that the antibodies used do not preferentially pull down sheared 
fragments in which the DNA-protein binding complex is located on either the 5` end or the 3` 
end of the fragment.    
 
If these assumptions hold, the population of labeled DNA fragments to be hybridized to the tiling 
array can be considered a random distribution centered on the site of the DNA-protein binding 
site.  There may still be some unintended directional bias if the TSSs considered in each of the 
categories are biased with respect to the position of the tiles.  For example, TSS positions that are 
biased to the 3’ end of the array tiles will, on average, result in a higher enrichment signal in tiles 
that are further downstream from the center tile.  Similarly, if the TSS positions are located in 
gaps on the tile path and the positions of the TSSs within the gaps are preferentially toward the 
5’ or 3’ end of the gap on the tile path, there will be an enrichment bias to the 3’ or 5’ the DNA-
protein binding location, respectively.   
 
Supplementary Figure 27 shows that the distribution of the distance of the category A TSSs from 
the center of the tiles on the Sanger PCR array as a fraction of the tile length is essentially flat.  
We do note that there is a small bias for category A TSSs to be toward the 3’ end of the tiles and 
category B TSS- to be toward the 5’ end of tiles.  Indeed, the tendency for enrichments to be 
slightly shifted 3’ appears in Figure 5 and section S3.6  but does not affect the symmetrical 
nature of the enrichment signatures.  
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Supplementary Figure 27: Distribution of the distance of category A TSSs from the center 
of the array tile on the Sanger PCR array platform as a fraction of the total length of the 
tile. 

S3.8 BAF Analysis 

S3.8.1  Computational Analysis 
Both the BAF and CTCF signal show broad enrichment and depletion in aggregate around 
different positions in the genome. This could be due to a number of different phenomena; for 
example, enrichment could either be due to a general raising or lowering of the genomic 
background or due to more specific highly enriched regions near the sites. Broad depletion 
signals are more complex to understand; as aggregation takes normalised scores, this could be 
due to a shift in the overall mean signal due to a long tail of highly enriched sites, or a more 
general shift in the analysis. 
 
To characterise this further, we considered the BAF155 signal partitioned into different genomic 
regions based on the following hierarchy; within 100bp of a Category A TSS, within 5KB of a 
Category A TSS, within a Gene extent (but outside of the TSS neighborhood), within 1KB of a 
distal DHS or intergenic. These are plotted in Supplementary Figure 28. The two gene centric 
regions have their entire distribution right shifted, with very few positions showing low BAF 
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signal in the close to TSS position (red) and an even distribution of the positions showing 
enriched BAF (blue) near TSSs. This suggests that the main features of the BAF signal is due to 
a broad region around each TSS having considerable enrichment across all tiles; this 
consequently raises the average mean position. The gentle depletion of BAF around distal sites is 
a more complex story (magenta curve vs black curve). A shift of the mean signal due to the 
enrichment around the TSS should give a reasonably flat depletion (without a peak) across distal 
sites. Although broad, the depletion does have a mode around the central site. This is either due 
to genuine low enrichment cases concentrated at this position (31% of the distal DHS probes are 
in the lowest quartile of the overall distribution whereas 39% of the intergenic probes), but also 
could be due to clustering effects of unrecognized TSSs, meaning that sites which are at least 
5KB from any detected TSS are also more likely to be distant from undetected TSSs. Aggregate 
depletion of signal is hard to explain with simple models for the main Chip/Chip distribution 
being due to random, non biological variables and clearly these signals suggest a more complex 
view of Chip/Chip data with many biological variables influencing the signal readout across 
every tile. 
 

 
Supplementary Figure 28: BAF signal near different classes of genomic feature.  Red is 
within 100bp of a TSS, blue within 5kb of a TSS, green within gene extents, magenta within 
1kb of a distal DHS, and black intergenic. 

S3.8.2  Sheared chromatin 
This gel image in Supplementary Figure 29 displays sheared chromatin that was prepared from 
unstimulated HeLaS3 cells and used in BAF155 and BAF170 ChIP-chips (sample lanes 1 to 3, 
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with each lane containing a separate biological replicate). For comparison, lanes 4 and 5 show 
sheared chromatin that was prepared from interferon gamma-stimulated HeLaS3 cells and used 
in Stat1 ChIP-chips, a transcription factor characterized to have a point source binding profile. 
 

 
Supplementary Figure 29: Sheared chromatin used in BAF155, BAF170, and STAT1 ChIP 
Experiments 

 

S3.9 Prediction of TSS activity from chromatin modifications 
An SVM was used to predict the transcriptional state of the last exon in HeLa and GM06990 
cells based on the presence of various histone modifications. 
 
The SVM input data set contains individual training patterns labeled as positive or negative 
according to the assayed activity of transcripts measured by the activity of internal exons from 
the Affymetrix tiling arrays.  Each pattern is a vector of individual measurements from five 
histone modification assays: H3K4me1, H3K4me2, H3K4me3, H3ac, H4ac.  The data set is 
comprised of 529 patterns, of which 231 are negative and 298 are positive. 
 
The performance of the SVM is measured using 10-fold cross-validation.  This procedure 
involves splitting the data set at random into 10 equally sized parts.  During each step of cross 
validation, the SVM is trained on 90% of the data, and the resulting classifier is evaluated on the 
remaining 10%.  To compute the final accuracy, the predictions for all ten test sets are combined. 
 
The SVM uses a radial basis kernel function .  The width parameter \gamma 
as well as the SVM soft margin parameters C are selected via internal cross-validation within 
each training set, considering and . 
 
The SVM produced an accuracy of 88% for HeLa, and 91% for GM06990.  
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S3.10  RFBR Identification Methods 

S3.10.1  Identification of RFBRs in ChIP-chip experiments 
All pre-processing steps were performed using existing methods (normalizeWithinArrays, 
normalizeBetweenArrays, lmFit, and eBayes) from the R package limma in Bioconductor90. 
After scanning and image extraction, Cy5 (ChIP DNA) and Cy3 (input) signal values were 
normalized within each array by applying either intensity-dependent Loess correction based on 
control probes or median-scaling normalization. To combine replicates, we used quantile-
normalization between arrays and a linear model-fitting strategy to estimate an average log-ratio 
for each probe. 
 
For NimbleGen platform arrays, we used a computational peak-finding strategy called MPeak 
which models binding profiles as triangles with peaks at binding sites, estimates a P-value for 
significance based on the average of the probe signals defining the triangle, and adjusts the P-
value cutoff for multiple-testing by False Discovery Rate (FDR) control91. We applied MPeak on 
the average profile over replicates, as well as on individual array experiments. To define binding 
sites, we selected significant peaks at 1, 5, and 10% FDR predicted in the average profile that are 
supported by peak predictions (at the same FDR) in at least 2 out of 3 replicates. 
 
For PCR arrays, a variation on the single-array error model was used to define PCR probes as 
significantly enriched92. Instead of assuming a standard normal distribution for the test statistics 
representing the PCR probes, we used the R package locfdr to estimate the parameters of the 
normal distribution which best fit the middle range of the test statistics93-95. We used this 
estimated distribution to assign P-values and FDR values for the test statistics based on 
individual array experiments and for the weighted-average test statistics based on combinations 
of replicate array experiments. To define enriched binding regions, we selected PCR probes at 
less than 1, 5, 10% FDR based on their weighted-average test statistics which are also defined as 
enriched in 2 out of 3 replicates based on P-value <0.01 for the UCSD PCR arrays and P-value 
<0.05 for the Sanger PCR arrays. 
 
For both array platforms, binding sites within 1 kb of each other were combined to define 
binding regions. The midpoint of each binding region was then used to define a “point-source” 
binding peak. 
 
For Affmetrix platform, differential behavior at four time points (0, 2, 8 and 32 hrs after 
treatment) was assessed by a modification of Significance Analysis of Microarrays (SAM)96, 97. 

S3.10.2  RFBR Identification in ChIP-sequencing experiments 
Human cancer cell HCT116 and HeLa lines were cultured in DMEM containing 10% FCS and 
subjected to 5-FU and IF-g treatment followed by cross-linking and chromatin-
immunoprecipitation using anti-p53 DO1 monoclonal antibody (Santa Cruz) and anti-STAT1 
antibody, respectively. The end polished ChIP DNA fragments were ligated to the cloning vector 
pGIS3, which contains two MmeI recognition sites to form the ChIP DNA library. Purified 
plasmid prepared from the ChIP DNA library was digested with MmeI, end-polished with T4 
DNA polymerase to remove the 3'-dinucleotide overhangs, and the resulting plasmids containing 
a signature tag from each terminal of the original ChIP DNA insert were self-ligated to form the 
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single-ditag library. 50 bp paired end ditags (PETs) were released by BamHI digestion, PAGE-
purified, then concatenated and separated on a 4-20% gradient TBE-PAGE. An appropriate size 
fraction (1-2 kb) of the concatenated DNA was excised, extracted and cloned into BamHI-cut 
pZErO-1 (Invitrogen) to form the final ChIP-PET library for sequencing. 
 
PET sequences containing 18 bp from 5' and 18 bp from 3' ends of the original ChIP DNA 
fragments were extracted from the raw sequences obtained from the PET library, and mapped to 
human genome assembly hg17. The process of PET extraction and mapping is essentially the 
same as previously described for cDNA analysis32. The specific mapping criteria are that both 
the 5' and 3' signatures must be present on the same chromosome, on the same strand, in the 
correct orientation (5'-3'), with a minimal 17 bp match, and within 4 kb of genomic distance. 
 

S3.10.3  TSS Positional Specificity of RFBRs 
The raw data of a ChIP-chip experiment was formatted so that each probe was represented as its 
mapped genomic coordinates associated with a measured signal level. Given a certain set of 
anchor coordinates, such as transcription start sites, the relative genomic distance between each 
probe and its nearest TSS was calculated. Then the signal associated with the probe was mapped 
to the specific distance, and signals at the distance were averaged across all TSSs. Smoothed 
plots for average ChIP-chip signals vs. distances to TSSs were made by stepping through 
distances by windows of 100 data points and taking the average. TSSs were separated according 
to whether they overlap with CpG islands or not (CpG+/-) and whether the transcript was 
detected according to Su et al98 (the presence/absence calls). The TSS-averaged signal was 
plotted for cMyc, Sp3, cJun and STAT1. 
 
 

S3.11  Detection of overrepresented motifs with ab initio methods 
RFBRs bound by many sequence-specific factors are enriched for their motifs.  We examined 31 
ChIP-chip datasets generated for 18 sequence-specific factors for the presence of sequence 
motifs.  For ten datasets, the cognate motif matrices in TRANSFAC99 were found to be 
overrepresented in RFBRs compared to randomised genomic sequences (P-value 0.001; see 
Frith, M. C. et al100).  Of the 18 factors assayed, nine have at least one dataset that is enriched for 
its corresponding motif. For seven datasets, the motif could be uncovered using an ab initio 
program. Supplementary Table 11 summarizes the enrichment and discovery results.  Some of 
the ab initio-predicted matrices contain more conserved positions than those reported in 
TRANSFAC (Supplementary Figure 30), indicating that our RFBR datasets can be used to 
improve the motif definitions.  However, the datasets for 9 factors were not found to contain an 
enriched TRANSFAC motif nor could any motif be identified using ab initio methods.  There are 
a number of possible explanations for this lack of apparent sequence specificity – that the 
TRANSFAC motifs are not accurate; that in vitro binding preferences do not fully reflect the 
sites that are bound in vivo; and that the antibodies used in the ChIP-chip studies recognize other 
sequence-bound elements or other factors that may have caused experimental failure.  It is 
important to remember that in a ChIP-chip experiment, protein-protein interactions can occur in 
addition to direct protein-DNA interactions; therefore, for complex interactions involving 
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multiple factors, not every identified DNA segment will have a sequence-specific motif that is 
associated with the particular factor under study in that experiment. 
 

 
Supplementary Figure 30: Established and derived sequence motifs for selected sequence-
specific protein factors. The upper and lower rows depict the TransFac motifs and motifs 
deduced ab initio from the RFBRs, respectively. The height of each letter corresponds to 
the relative information content at that position in the motif. Data are shown for the four 
indicated proteins, with the data in each case generated using the indicated cell lines. 

 

Supplementary Table 11:  Motif enrichment in RFBRs of sequence-specific transcription 
factors.  The “Enriched in PSSM” column indicates whether the RFBRs of a factor as a she 
are enriched in the motif of the factor as described by the position specific scoring matrix 
(PSSM) in the “PSSM Accession in TRANSFAC” column.  Enrichment is defined by using 
Clover100 at P-values less that 0.001.  The “Motif found ab initio” indicates whether any of 
the three programs BioProspector101, MDscan102, and WEEDER103 could discover the 
cognate motif. 

Dataset 
PSSM 
available? 

PSSM Accession in 
TRANSFAC 

Enriched in 
PSSM? 

Motif found 
ab initio? 

ALL_STAT1gIF_HeLa YES STATx.M00223 YES No 
ALL_STAT1_HeLa YES STATx.M00223 NO No 
NG_STAT1-NASA_HeLa YES STATx.M00224 NO No 
NG_STAT1-P30_HeLa YES STATx.M00223 YES Yes 
NG_STAT1-Yale_HeLa YES STATx.M00223 NO No 
UCSD_STAT1-P30_HeLa YES STATx.M00223 YES Yes 
ALL_cMyc_HeLa YES Myc.M00799  NO No 
NG_cMyc-Qt_2091 YES Myc.M00799  NO No 
NG_cMyc-St_2091 YES Myc.M00799  NO No 
NG_cMyc-UCD_HeLa YES Myc.M00799  NO No 
NG_cMyc-UT_HeLa YES Myc.M00799  YES Yes 
ALL_p53_HCT116 YES p53 decamer.M00761 YES No 
AFFX_p63-ActD_ME180 YES p53 decamer.M00761  YES Yes 
AFFX_p63-noAD_ME180 YES p53 decamer.M00761  NO No 
NG_Sp1_HCT116 YES Sp1.M00196 NO No 

doi: 10.1038/nature05874    SUPPLEMENTARY INFORMATION

www.nature.com/nature 98



 

 

NG_Sp1_JURKAT YES Sp1.M00196 NO No 
NG_Sp1_K562 YES Sp1.M00196 NO No 
NG_Sp3_HCT116 YES Sp3.M00665 NO No 
NG_Sp3_JURKAT YES Sp3.M00665 NO No 
NG_Sp3_K562 YES Sp3.M00665 NO No 
NG_E2F1_HeLa YES E2F.M00803 YES No 
NG_E2F4_2091 YES E2F-4:DP-1.M00738 NO No 
NG_cJun_HeLa YES CRE-BP1:c-Jun.M00041 NO No 
Sanger_HNF3b_HePG2 YES HNF-3.M00791 YES Yes 
Sanger_HNF4a_HePG2 YES HNF-4.M00134 YES Yes 
Sanger_USF1_HePG2 YES USF.M00217 YES No 
AFFX_CEBPe_HL60 YES C/EBP.M00770 YES Yes 
AFFX_CTCF_HL60 See Below N/A NO No 
AFFX_PU1_HL60 YES PU.1.M00658 NO No 
AFFX_RARecA_HL60 YES RAR.M00762 NO No 
AFFX_p300_HL60 YES p300.M00033 NO No 
NG_BAF155_HeLa NO N/A N/A N/A 
NG_BAF170_HeLa NO N/A N/A N/A 
UCSD_Suz12_HeLa NO N/A N/A N/A 
AFFX_Brg1_HL60 NO N/A N/A N/A 
AFFX_SIRT1_HL60 NO N/A N/A N/A 
FOS No RFBR at 5% FDR 

 
 

S3.12  Significance of RFBR enrichments near GENCODE TSSs 
In order to assess the significance of enrichments of RFBRs near GENCODE TSSs, we have 
carried out a random simulation. First, we calculated the observed number of RFBRs near 
GENCODE TSSs for each ChIP experiment.  Then, we randomly generated a set of fragments 
with their total number, length distribution, and ENCODE region distribution matching to those 
of the experimental RFBRs.  This set was used to compute an expected number of RFBRs near 
TSSs.  Repetitive elements were excluded in our simulation and the randomization was repeated 
500 times to obtain the average expected number of RFBRs near TSSs.   In the end, the observed 
number of RFBRs near GENCODE TSSs was divided by this expected number to yield the 
relative enrichment that is depicted on y-axis in Supplementary Figure 31.  As shown in this 
figure, our simulation indicates that for most ChIP experiments the enrichment of their RFBRs 
near GENCODE TSSs is significant (>1.0). Each point in Supplementary Figure 31 represents 
one ChIP experiment.  
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Supplementary Figure 31: Distribution of RFBRs relative to GENCODE TSSs. The y-axis 
depicts the relative enrichment of RFBRs at GENCODE TSSs, while the x-axis shows the order 
of factors tested by ChIP experiments with respect to this enrichment.  Random expectation 
corresponds to an enrichment of 1.0.  Pink circles represent factors expected to be general for 
many promoters (e.g., polymerase), whereas blue circles represent factors expected to be more 
sequence-specific. A handful of representative factors are labelled. 

 

S3.12.1  Supplemental table provided in accompanying Excel spreadsheet 
This table shows for each ChIP experiment the percentage of RFBRs in various distance (in a 1 
kb increment) in relation to category A TSSs. Data in this table shows that more than half of 
RFBRs for SIRT1 are 20 kb away from TSSs and thus are generally in "gene deserts." 
 
This table is provided in the included supplemental Excel spreadsheet on the worksheet labeled 
S3.12.1. 

S3.13  Integration approaches to generate Regulatory Cluster lists 
We implemented four complementary approaches to integrate the data from 129 ChIP datasets. 
The Z-score method (see Supplement S3.13.1 ) normalizes ChIP scores from individual 
experiments and assigns a cumulative normalised score to genomic intervals.  The Naïve Bayes 
method (see Supplement S3.13.2 ) combines ChIP scores from different experiments after 
thresholding and weighting them based on a set of known promoters. Though both these methods 
use continuous ChIP scores, Naïve Bayes makes an assumption on how a typical promoter is 
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while Z-score treats all the datasets the same way. The third and fourth methods, tree-weighting 
(see Supplement S3.13.3 ) and majority-voting (see Supplement S3.13.4 ) use FDR thresholded 
ChIP scores. Tree-weighting method weights the counts from ChIP hits based on both the TSS 
enrichments of individual experiments and the correlation between experiments. The last 
method, majority-voting, evaluates the level of experimental support for each genomic position 
by taking into account the number of cross-lab, cross-platform or cross-factor ChIP hits matching 
that position. 
 
Each of these integration methods is described in detail below. From these four methods we 
constructed two composite lists: A "small union list" of 965 regions from the union of 
approaches 1 and 2 (Z-score and Naive Bayes) and a "large union list" of 1393 regions from the 
union of the four methods. Both of these lists are available from the UCSC browser. 
 

S3.13.1  Integration Approach 1: Z-score method 
We first selected a set of promoter-specific experiments that we wished to integrate to identify 
potentially novel promoters30.  We then matched corresponding datapoints between datasets. To 
accomplish this, we divided the ENCODE region into ~24,000 reference intervals that largely 
corresponded to the probes from the 2 PCR tiling arrays. The ChIP intensities were converted to 
Z-scores and assigned to the reference intervals. 
 
To identify genomic regions identified by multiple experiments, we then summed the Z-scores 
for each interval across all the experiments (setting negative Z-scores to zero). To estimate a P-
value for the summed score of each interval, we shuffled the data for each experiment within the 
~24,000 reference intervals and then re-summed the values. We repeated this 10 times, to get a 
confidence value for each of the ~24,000 intervals. We used a cutoff of p<0.001 to define a list 
of putative promoters from this integrated analysis and merged regions that were within 100 bp 
of each other. 
 

Supplementary Table 12: Experimental data in the “promoter” group used in the Z-score 
based method. 

Experimental data in "promoter" group for the Z-score method: 

HCT116_Sp1_ChIP H4ac_K562_1.wig.txt 

HCT116_Sp3_ChIP GM06990_61105_Regulome_ENCODE.txt 

Jurkat_Sp1_ChIP K562_061105_Regulome_ENCODE.txt 

Jurkat_Sp3_ChIP SKNSH_061105_Regulome_ENCODE.txt 

K562_Sp1_ChIP CACO2_061105_Regulome_ENCODE.txt 

K562_Sp3_ChIP encodeUcsdChipAch3Imr90_f.txt 

CTCF_00hr encodeUcsdChipHeLaH3H4acH3_p0.txt 

Brg1_00hr encodeUcsdChipHeLaH3H4acH4_p0.txt 

CEBPe_00hr encodeUcsdChipHeLaH3H4dmH3K4_p0.txt 

HisH4_00hr encodeUcsdChipHeLaH3H4RNAP_p0.txt 
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P300_00hr encodeUcsdChipHeLaH3H4stat1_p0.txt 

Pol2_00hr encodeUcsdChipHeLaH3H4TAF250_p0.txt 

PU1_00hr encodeUcsdChipHeLaH3H4tmH3K4_p0.txt 

RARecA_00hr encodeUcsdChipMeh3k4Imr90_f.txt 

H3K27T_00hr encodeUcsdChipRnapHct116_f.txt 

SIRT1_00hr encodeUcsdChipRnapHela_f.txt 

H3K4me1_GM06990_1.wig.txt encodeUcsdChipRnapImr90_f.txt 

H3ac_GM06990_1.wig.txt encodeUcsdChipRnapThp1_f.txt 

H3ac_K562_1.wig.txt encodeUcsdChipTaf250Hct116_f.txt 

H3K4me2_GM06990_1.wig.txt encodeUcsdChipTaf250Hela_f.txt 

H3K4me2_K562_1.wig.txt encodeUcsdChipTaf250Imr90_f.txt 

H3K4me3_GM06990_2.wig.txt encodeUcsdChipTaf250Thp1_f.txt 

H3K4me3_K562_1.wig.txt encodeUcsdNgHeLaH3K4me3_p0.txt 

H4ac_GM06990_1.wig.txt encodeUcsdNgHeLaRnap_p0.txt 
 

S3.13.2  Integration Approach 2: Naïve Bayes Method 
Training Set: We trained a Naïve Bayes classifier to predict regulatory regions. A training set of 
real TSS and non-TSS regions was built as follows. The set of real TSS (positive set) was based 
on CAGE (5' Cap Analysis of Gene Expression) and GIS-PET (Gene Identification Signature 
Paired-End ditag) clusters. All the CAGE tags in ENCODE regions were clustered and only 
clusters with 4 or more tags were kept, producing 797 examples. These 797 examples were 
further filtered by intersecting them with the 5'-ends of GIS-PETs in either HCT116 or MCF7 
cell lines to obtain 223 positive examples. The negative regions were selected from deep introns 
(3rd or deeper) and the CDS parts of deep exons. The introns were verified not to overlap with 
exons from other transcripts, TARs or transfrags. These selection criteria resulted in 225 regions, 
spanning approximately 450kb. All possible uniformly distributed and non-overlapping windows 
of 300bp were extracted, which gave 1365 negative examples (negative set). 
 
Training of the Bayesian Model: For each region in the training set, the average ChIP enrichment 
scores corresponding to different ChIP experiments within a 1KB window around the TSS were 
extracted. Using these scores, each ChIP dataset was binarized at a cutoff that maximized the 
correlation between the training set and the binarized ChIP dataset. The training set thus 
consisted of positive and negative examples of a TSS, each associated with a binary vector 
describing the presence or absence pattern of each TF within that example region. The prediction 
of the model is the log odds of a TSS given data. The log odds of a TSS is defined as: 

]
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The first term is the prevalence of the TSSs. In the second term, Di is a binary variable that 
denotes the ith dataset. If x=1 (i.e., the average score for ChIP dataset Di around the given TSS is 
above its threshold and hence the represented factor is present in the example), we call the 
contribution to the second term PLL (positive log likelihood) and if x=0 we call it NLL (negative 
log likelihood). For each dataset, both PLL and NLL were measured empirically from the 
training set. 
 
Scanning of ENCODE Regions with the Bayesian Model: Once the appropriate Bayesian weights 
were calculated (PLL and NLL), ENCODE regions were scanned using the model to predict new 
regulatory regions. To build a map of regulatory regions we calculated, for each base pair in the 
ENCODE regions, the log odds score of it being part of a TSS by summing contributions from 
individual ChIP datasets at that base pair. For each dataset, the contribution is either PLL or NLL 
depending on whether that base pair is called present or absent in that dataset based on the 
respective binarization cutoff. Contiguous base pairs with a log odds score above a chosen cutoff 
were joined to define putative regulatory regions. The final list of regions was obtained by 
pruning all the regions shorter than 300bp and by joining regions separated by less than 200bp. 
The score cutoff was calculated based on the expected prevalence of TSSs in the entire 
ENCODE region but was later made more stringent to obtain a higher confidence set of 
predictions. 
 

S3.13.3  Integration Approach 3: Tree-weighting Method 
In this method, we first calculated the fold-enrichment Fi of RFBRs near TSSs for each 
experiment i. Briefly, the fold-enrichment was defined as the number of RFBRs near a TSS (-2 
kb to +200 bp) divided by a corresponding number derived from a simulation in which the 
RFBRs for experiment i were randomly shuffled and placed back on the individual ENCODE 
regions (excluding repeats). Separately, we constructed a cluster tree of all ChIP experiments 
based on their similarities with regard to the genomic distribution of RFBRs. This is very similar 
to the construction of the whole-track correlation scores (described above). A weight Wi was 
assigned to each leaf (i.e., experiment i) using a branch-length division method104. The primary 
purpose of this clustering and weight-assigning step was to minimize the bias introduced by the 
same factors being tested in multiple conditions and several platforms. In this analysis, the 
overall weight for a particular factor would be apportioned between individual experiments with 
a ratio between 1/n and 1, where n is the number of experiments in which this factor was probed. 
We then made a union list of RFBRs from individual experiments on the condition that 
overlapping (by ≥ 50 bp) RFBRs were merged into a single region. This union contained 3227 
regions (average length ~1.1 kb). A score Sj was subsequently assigned to each region j in the 
union list. It was defined as ∑ (Ni x Fi x Wi) where Ni was the number of RFBRs within this 
region j from experiment i, and Fi and Wi were the fold-enrichment and weight computed for 
experiment i, respectively. Finally, in order to make this integrative list comparable with those 
from the other three methods we used a Sj threshold of 0.05 to generate a total of 714 regions, 
based on the distribution of scores in these regions. This cutoff approximately corresponded to 2 
ChIP hits per region.  
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S3.13.4  Integration Approach 4: Voting Method 
We developed a voting method to identify genomic regions that were determined by at least two 
ChIP datasets from different labs, or on different factors, or on different platforms. Each 
experiment was given a weight based on two measures: 1) the number of different investigators 
within ENCODE who studied the sequence-specific transcription factor, histone modification, 
PolII, or TAF1, 2) the number of different platforms used in these studies. An experiment would 
be assigned a maximum weight of one if the factor, modification, or binding in question was 
studied by a single investigator using a single platform type. Otherwise, a weight smaller than 
one and inversely proportional to the multiplicity was assigned. Supplementary Table 13 shows 
the weights used for each experiment. 
 
We used the weighted RFBRs to determine genomic regions marked by different groups of 
RFBRs at different FDR levels. The 129 experiments were stratified into two groups: those for 
sequence specific transcription factors (Sequence Specific Voting List) and the remaining ones 
for histone modifications, Pol2, and TAF1 binding. For each experiment, all the base pairs within 
an RFBR were assigned the same weight and for each base pair these weights were summed 
across all the experiments in each of the two groups. This gave a continuous score over the 
ENCODE regions. The score at a given base position is i) zero if that base doesn't appear in any 
of the RFBRs, ii) above zero if that base gets support from at least one experiment, iii) above one 
if that base is supported by at least two experiments done either using the same platform by 
different investigators or using different platforms by the same investigator. For each group, two 
different thresholds were used (zero and one) to convert the continuous scores to genomic 
regions. All the base pairs above the threshold were clustered together to define a genomic 
region whose score was the mean score for all the base pairs contained within it. 
 

Supplementary Table 13: Weights used in the voting method. 

Peakfile designfile 
Inverse
Weight Weight lab TR 

HisPol
TAF TF

AFFX_Brg1-00_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_Brg1-02_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_Brg1-08_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_Brg1-32_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_CEBPe-00_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_CEBPe-02_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_CEBPe-08_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_CEBPe-32_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_CTCF-00_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_CTCF-02_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_CTCF-08_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_CTCF-32_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_H3ac-00_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_H3ac-02_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_H3ac-08_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_H3ac-32_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_H4ac-00_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_H4ac-02_HL60 Affy.all 8 0.125 Affy 1 1 0
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AFFX_H4ac-08_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_H4ac-32_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_P300-00_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_P300-02_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_P300-08_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_P300-32_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_p63-ActD_ME180 Affy.all 4 0.25 Affy 1 0 1
AFFX_p63-noAD_ME180 Affy.all 4 0.25 Affy 1 0 1
AFFX_PolII-00_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_PolII-02_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_PolII-08_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_PolII-32_HL60 Affy.all 8 0.125 Affy 1 1 0
AFFX_PU1-00_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_PU1-02_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_PU1-08_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_PU1-32_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_RARecA-00_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_RARecA-02_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_RARecA-08_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_RARecA-32_HL60 Affy.all 8 0.125 Affy 1 0 1
AFFX_SIRT1-00_HL60 Affy.all 16 0.0625 Affy 1 0 1
AFFX_SIRT1-02_HL60 Affy.all 16 0.0625 Affy 1 0 1
AFFX_SIRT1-08_HL60 Affy.all 16 0.0625 Affy 1 0 1
AFFX_SIRT1-32_HL60 Affy.all 16 0.0625 Affy 1 0 1
AFFX_TFIIB-32_HL60 Affy.all 4 0.25 Affy 1 1 0
Ng_TAF1-Yale_HeLa Ng.all 1 1 Ng 1 1 0
Ng_Sp1_HCT116 Ng.all 3 0.333333333 Ng 1 0 1
Ng_Sp1_Jurkat Ng.all 3 0.333333333 Ng 1 0 1
Ng_Sp1_K562 Ng.all 3 0.333333333 Ng 1 0 1
Ng_Sp3_HCT116 Ng.all 3 0.333333333 Ng 1 0 1
Ng_Sp3_Jurkat Ng.all 3 0.333333333 Ng 1 0 1
Ng_Sp3_K562 Ng.all 3 0.333333333 Ng 1 0 1
Ng_STAT1-NASA_HeLa Ng.all 2 0.5 Ng 1 0 1
Ng_STAT1-P30_HeLa Ng.all 1 1 Ng 1 0 1
Ng_STAT1-Yale_HeLa Ng.all 2 0.5 Ng 1 0 1
Ng_BAF155_HeLa Ng.all 2 0.5 Ng 1 0 1
Ng_BAF170_HeLa Ng.all 2 0.5 Ng 1 0 1
Ng_E2F1_HeLa Ng.all 1 1 Ng 1 0 1
Ng_E2F4_2091 Ng.all 1 1 Ng 1 0 1
Ng_cMyc-UCD_HeLa Ng.all 1 1 Ng 1 0 1
Ng_cMyc-UT_HeLa Ng.all 1 1 Ng 1 0 1
Ng_cMyc-Qt_2091 Ng.all 2 0.5 Ng 1 0 1
Ng_cMyc-St_2091 Ng.all 2 0.5 Ng 1 0 1
Ng_cJun_HeLa Ng.all 1 1 Ng 1 0 1
Ng_Fos_HeLa Ng.all 1 1 Ng 1 0 1
ALL_STAT1_HeLa ALL.all 2 0.5 PET 1 0 1
ALL_STAT1gIF_HeLa ALL.all 2 0.5 PET 1 0 1
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ALL_cMyc_HeLa ALL.all 1 1 PET 1 0 1
ALL_p53_HCT116 ALL.all 1 1 PET 1 0 1
Sanger_H3ac_GM06990 Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H3ac_HeLa Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H3ac_K562 Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H4ac_GM06990 Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H4ac_HeLa Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H4ac_K562 Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H3K4me1_GM06990 Sanger.all 2 0.5 Sanger.PCR 1 1 0
SUZ Sanger.all 2 0.5 Sanger.PCR 1 1 0
Sanger_H3K4me2_GM06990 Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H3K4me2_HeLa Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H3K4me2_K562 Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H3K4me3-2_GM06990 Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H3K4me3_HeLa Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Sanger_H3K4me3_K562 Sanger.all 3 0.333333333 Sanger.PCR 1 1 0
Ng_H3ac-P0_HeLa Ng.all 2 0.5 UCSD.Ng 1 1 0
Ng_H3ac-P30_HeLa Ng.all 2 0.5 UCSD.Ng 1 1 0
Ng_H4ac-P0_HeLa Ng.all 1 1 UCSD.Ng 1 1 0
Ng_H3K4me2-P0_HeLa Ng.all 2 0.5 UCSD.Ng 1 1 0
Ng_H3K4me2-P30_HeLa Ng.all 2 0.5 UCSD.Ng 1 1 0
Ng_H3K4me3-P0_HeLa Ng.all 2 0.5 UCSD.Ng 1 1 0
Ng_H3K4me3-P30_HeLa Ng.all 2 0.5 UCSD.Ng 1 1 0
Ng_PolII-P0_HeLa Ng.all 2 0.5 UCSD.Ng 1 1 0
Ng_PolII-P30_HeLa Ng.all 2 0.5 UCSD.Ng 1 1 0
UCSD_H3ac_IMR90 UCSD.all 2 0.5 UCSD.PCR 1 1 0
UCSD_H3ac-P0_HeLa UCSD.all 4 0.25 UCSD.PCR 1 1 0
UCSD_H3ac-P30_HeLa UCSD.all 4 0.25 UCSD.PCR 1 1 0
UCSD_H4ac-P0_HeLa UCSD.all 2 0.5 UCSD.PCR 1 1 0
UCSD_H4ac-P30_HeLa UCSD.all 2 0.5 UCSD.PCR 1 1 0
UCSD_H3K4me2_IMR90 UCSD.all 2 0.5 UCSD.PCR 1 1 0
UCSD_H3K4me2-P0_HeLa UCSD.all 4 0.25 UCSD.PCR 1 1 0
UCSD_H3K4me2-P30_HeLa UCSD.all 4 0.25 UCSD.PCR 1 1 0
UCSD_H3K4me3-P0_HeLa UCSD.all 2 0.5 UCSD.PCR 1 1 0
UCSD_H3K4me3-P30_HeLa UCSD.all 2 0.5 UCSD.PCR 1 1 0
UCSD_PolII-P0_HeLa UCSD.all 8 0.125 UCSD.PCR 1 1 0
UCSD_PolII-P30_HeLa UCSD.all 8 0.125 UCSD.PCR 1 1 0
UCSD_PolII_HCT116 UCSD.all 4 0.25 UCSD.PCR 1 1 0
UCSD_PolII_IMR90 UCSD.all 4 0.25 UCSD.PCR 1 1 0
UCSD_PolII_THP1 UCSD.all 4 0.25 UCSD.PCR 1 1 0
UCSD_TAF1_HCT116 UCSD.all 4 0.25 UCSD.PCR 1 1 0
UCSD_TAF1_IMR90 UCSD.all 4 0.25 UCSD.PCR 1 1 0
UCSD_TAF1_THP1 UCSD.all 4 0.25 UCSD.PCR 1 1 0
UCSD_TAF1-P0_HeLa UCSD.all 8 0.125 UCSD.PCR 1 1 0
UCSD_TAF1-P30_HeLa UCSD.all 8 0.125 UCSD.PCR 1 1 0
UCSD_STAT1-P30_HeLa UCSD.all 2 0.5 UCSD.PCR 1 0 1
Sanger_HNF3b_HePG2 Sanger.all 1 1 Sanger.PCR 1 0 1
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Sanger_HNF4a_HePG2 Sanger.all 1 1 Sanger.PCR 1 0 1
Sanger_USF1_HePG2 Sanger.all 1 1 Sanger.PCR 1 0 1

 

S3.13.5  Site detection algorithm 
The site detection algorithm employs a rank statistics based paradigm where all enrichment sites 
are ranked based on their intra-replicate ranks and inter-replicate rank consistency. The two 
fundamental parameters of the site detection model are: (a) signal enrichment; (b) pScore where 

( )( )pValuepScore p 10log10−== σ . The first step in the algorithm entails the application of a 
lenient threshold, approximating a signal to noise ratio (SNR) slightly greater than 1. This 
estimate, based on either a fixed pScore (20) or a signal enrichment (log(2)) threshold, captures 
the maximal number of candidate intervals or seed sites. The second step refines the seeding 
process and associates statistical significance to each site. This optimization is governed by the 
following parameters determined both on an intra and inter array basis. Specifically on a per site 
basis, they comprise of: (a) Rank of pScore per replicate; (b) Sum of the absolute pair-wise rank 
difference (SAD) across replicates; (c) χ2 based composite P-value estimate across replicates; 
The basic optimization in the model involves: minimization of the above three parameters with 
simultaneous maximization of signal enrichment. Ultimately, seed sites with superior intra-
replicate ranks as well as high rank consistency across replicates are expected to dominate the 
highly significant set of the final sites. The site rankings are accompanied by site-level meta P-
value and composite signal enrichment across replicates. Further segmentation of the ranked 
sites is possible via P-value or signal enrichment criteria individually or by a criterion derived 
from the composite. Sensitivity (reported for H4ac data) obtained following segmentation of data 
using the filters: (a) meta P-value of 10-5: 88%; (b) array enrichment of 0.2: 87%; (c) composite 
of (a) and (b): 95%.  
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Supplementary Figure 32: Comparison of the composite Regulatory Cluster lists generated 
by four methods. The four methods independently generated 793 (NB), 656 (Z), 828 (TW), 
and 1327 (V) Regulator Clusters respectively. To make the data directly comparable and 
resolve the caveat that a region from one method could overlap with multiple regions in 
another method, we had collapsed all regions from these four methods into 1393 non-
overlapping regions. This process resulted in 689, 580, 714, and 985 regions respectively for 
the four methods above. Shown in this Venn diagram is the partition of these 1393 regions 
into different sets according to how many methods identified them. For instance, 340 
regions were identified by all four methods. Numbers not shown include 6 between NB and 
TW only and 19 between V and Z only. All numbers sum up to 1393 non-overlapping 
regions. 
 

S3.14  The overlap of Regulatory Clusters with different TSS evidence classes. 
 
The correspondence of the regulatory clusters with the previously categorized TSSs was 
investigated by examining the numbers of clusters falling within 2.5kb of TSSs from each 
category. The table below shows the number and percent of 1393 Regulatory Clusters located 
within 2.5kb of a Transcription Start Site (TSS) from one of categories. TSS Categories as 
defined in Table 3 of the main paper.  Because a given Regulatory Cluster can fall within 2.5kb 
of more than one TSS the total of the percents exceeds 100. 
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Supplementary Table 14: Overlap of Regulatory Clusters with different TSS evidence 
classes. 

TSS Category (number of TSS 
in category) 

NUMBER OF  
REGULATORY 

CLUSTERS 

PERCENT OF 
REGULATORY 

CLUSTERS 
GENCODE 5’ ends (1730) 595 42.7 
Novel: Sense exon (1437) 405 29.1 
Novel: Antisense exon (521) 283 20.3 
Novel: TxFrag/RxFrag (639) 363 26.1 
Novel: CpG (164) 128 9.2 
 
As Supplementary Table 14 shows, there is a bias towards the GENCODE 5’ ends, but not 
obviously across the other classes.  
 

S3.15  Cloning putative novel promoters 
Of the 233 putative promoters that were cloned and tested, 186 had at least one CAGE or GIS-
PET supporting a TSS in that region (of these 186, 113 had only one tag). The remaining 47 
putative promoter fragments had no transcript data that supported a TSS in that region. For the 
186 that had CAGE or GIS-PET support, we used the 5’ end of the CAGE or GIS-PET sequence 
as the predicted TSS. We then used Primer3 software to design primers by inputting 600 bp of 
upstream sequence and 100bp downstream of the predicted TSS105. Each primer pair was 
required to flank the transcription start site. For the 47 promoters that lacked transcripts we 
designed primers to amplify a 1000 bp fragment so that we could clone it in both directions. To 
the 5’ end of each primer, we added 16 basepair tails to facilitate cloning by the Infusion Cloning 
System (BD Biosciences, Clontech cat no. 639605). (Left primer tail: 5’-
CCGAGCTCTTACGCGT-3’, Right primer tail: 5’-CTTAGATCGCAGATCT-3’) We amplified 
the fragments using the touchdown PCR protocol previously described106 and Titanium Taq 
Enzyme (BD Biosciences, Clontech, cat no 639210). To clone our PCR amplified fragments 
using the Infusion Cloning System, we combined 2 μl purified PCR product and 100 ng 
linearized pGL3-Basic vector (Promega). We added this mixture to the Infusion reagent and 
incubated at 42°C for 30 minutes. After incubation, the mixture was diluted and transformed into 
competent cells (Clontech cat. No. 636758). We screened clones for insert by PCR and positive 
clones were prepared as previously described. We quantified DNA with a 96-well 
spectrophotometer (Molecular Devices, Spectramax 190) and standardized concentrations to 50 
ng/μl for transfections. 
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Supplementary Table 15: Overlap of Experimentally Tested Regulatory Clusters with TSS 
Categories. The table lists experimental validation results for all the regulatory clusters 
that were tested by transient-transfection reporter assay (TFXN) and/or RACE. A 
regulatory cluster might overlap with more than one type of TSS category 

   TSS Categories   

   A B C D E F 
no_ABC

DE no_ABCDEF 

Pos 3 1 0 1 0 1 1 1 0 

Neg 17 3 4 7 8 2 3 4 3 Both 

Tested (Pos+Neg) 20 4 4 8 8 3 4 5 3 

Pos 85 24 19 14 28 9 23 29 21 

Neg 120 13 13 10 20 9 30 78 59 Either 

Tested (Pos+Neg) 205 37 32 24 48 18 53 107 80 

Pos 41 8 9 4 12 5 14 16 10 

Neg 122 13 12 12 25 10 31 76 57 TFXN 

Tested (Pos+Neg) 163 21 21 16 37 15 45 92 67 

Pos 47 17 10 11 16 5 10 14 11 

Neg 15 3 5 5 3 1 2 6 5 RACE 

Tested (Pos+Neg) 62 20 15 16 19 6 12 20 16 
 
 

 
Supplementary Figure 33: Example of a novel promoter supported by the reporter assay 
and RACE products. a) Region predicted to contain a novel promoter based on the 
integrated analysis b) Activity of the novel predicted promoter as assayed by the transient 
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transfection reporter assay c) 5’ RACE products show the 5’ end of a novel transcript 
occurs in the novel promoter region d) Annotated RefSeq genes e) Annotated human 
mRNAs f) Computationally predicted CpG islands g) Transcribed regions experimentally 
identified with genomic tiling microarrays h) Maps of experimentally identified 
transcription start sites based on CAGE and GIS-PET sequences i) Fragments assayed for 
promoter activity by transiently transfected reported constructs (intensity of red is 
proportional to promoter activity) j) Binding sites of various transcription factors 
identified by chromatin IP and tiling microarrays. This figure was adapted from the UCSC 
genome browser.  

 

S3.15.1  Cell culture, transient transfections, and reporter gene activity assays 
We performed transfections in 4 cultured human cell lines (Hela, HCT116, HT1080, and 
CRL1690) as previously described106. We seeded 5,000-10,000 cells per well in 96-well plates. 
Twenty-four hours after seeding, we co-transfected 50 ng of each experimental luciferase 
plasmid with 10 ng of renilla control plasmid (pRL-TK, Promega Cat. No. E2241) in duplicate 
using 0.3 μl of FuGene (Roche) transfection reagent per well. We also transfected 24 random 
genomic fragments as negative controls. Cells were lysed 24-48 hours post-transfection, 
depending on cell type. We measured luciferase and renilla activity using the PE Wallac 
Luminometer and the Dual Luciferase Kit (Promega, Cat. No. E1960). We followed the protocol 
suggested by the manufacturer with the exceptions of injecting 60 μl each of the luciferase and 
renilla substrate reagents and reading for 5 seconds.  

S3.15.2  Data Analysis 
The activity data is reported as a transformed ratio of luciferase to renilla. The mean ratio and 
standard deviation in the 4 cell lines were computed for 24 negative controls.  The final promoter 
activity was computed as the number of standard deviations from the mean for each promoter in 
each cell line. All the promoters which were at least three standard deviations above the mean 
ratio of the negatives were called significantly positive. 
 
 

S3.16  Control for the Ascertainment Bias 
 
The raw enrichment signal of 23 ChIP-chip datasets were compiled for 28 non-GENCODE 
based clusters. The signals from multiple ChIP-chip regions matching the same regulatory 
cluster were averaged. For each ChIP-chip dataset, a Mann-Whitney test was performed to 
compare the signal for 22 RACE-positive and 6 RACE-negative clusters.  Supplementary Table 
16 lists the two-tailed p-values.  None of the datasets suggests that there is a difference in the raw 
signal for positives vs. negatives. 
 

Supplementary Table 16:  Significance from rank sum test for 22 Novel RACE Positive and 
6 Novel RACE Negative regulatory clusters. 

ChIP-chip Dataset pvalue 
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ChIP-chip Dataset pvalue 

Stanford_Sp1_HCT116 0.112 

Stanford_Sp1_Jurkat 0.892 

Stanford_Sp1_K562 0.088 

Stanford_Sp3_HCT116 0.395 

Stanford_Sp3_Jurkat 0.427 

Stanford_Sp3_K562 0.157 

UCDavis_E2F1_HeLa 0.723 

UCDavis_Myc_HeLa 0.978 

UCSDNg_H3ac_HeLa_p0 0.604 

UCSDNg_H3ac_HeLa_p30 1 

UCSDNg_H3K4me2_HeLa_p0 0.892 

UCSDNg_H3K4me2_HeLa_p30 0.978 

UCSDNg_H3K4me3_HeLa_p0 0.764 

UCSDNg_H3K4me3_HeLa_p30 0.494 

UCSDNg_H4ac_HeLa_p0 0.643 

UCSDNg_Pol2_HeLa_p0 0.530 

UCSDNg_Pol2_HeLa_p30 0.806 

UCSDNg_STAT1_HeLa_p30 0.039 

UCSD_STAT1_HeLa_p0 0.764 

UCSD_STAT1_HeLa_p30 0.604 

UCSD_Suz12_HeLa 0.654 

UT_cMyc_HeLa 0.460 

UT_E2F4_2091Fibroblast 0.643 
 

S3.17  Classification of functional elements 

S3.17.1  SVM Classification of functional elements 
We used the Support Vector Machine algorithm to classify DHS segments on the basis of histone 
modification data. We designed classifiers to distinguish the signature or histone modifications 
patterns in distal and proximal distance with respect to GENCODE transcriptional start sites. 

S3.17.1.1  SVM discrimination of proximal DHS vs. non-proximal DHS 
(1) We begin by determining the distance between each DHS and the nearest GENCODE Gene. 
The GENCODE gene used in the analysis are an aggregate of the known, pseudo, and putative 
GENCODE subtracks.  
(2) Once the distance is calculated, each DHS is placed into a proximal or non-proximal 
category. In order to be considered proximal, a DHS must be within +/- 2500 bases of a 
GENCODE Tx start. We place all other DHSs in the nonproximal category. Each DHS is now 
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assigned an SVM training 'label', representing whether or not it is proximal to a GENCODE 
Gene.  
(3) All DHS segments are then expanded in each direction until the total segment length is 
1000bp.  
(4) We assign the mean score of each histone modification is assigned to each 1000bp expanded 
DHS.  This produces a vector of 5 scores for each DHS. 
(5) All histone scores are translated to standard units (Zscores) by using the mean and standard 
deviation of all results from a given assay over the entire ENCODE regions.  
(6) If a DHS does not contain a full set of histone modification scores (due to gaps in the 
underlying assay), the entire DHS is eliminated from the analysis.  
(7) We prepare the SVM input by placing each labeled DHS, and the associated histone 
modification scores, into a matrix.  
(8) Training and cross-validation results are generated by running a grid of SVM simulations 
using the freely available SVM implementation, PyML toolkit (http://pyml.sourceforge.net). We 
choose the best SVM resulting from 10-fold cross-validation of the training set. Each round of 
cross validation consists of training the SVM on a randomly selected 90% of the data, and then 
measuring the results against the held out 10%. An individual iteration of cross-validation 
performs model selection to select the best combination of SVM parameters. The specific 
parameters evaluated during model selection are Gaussian kernel gamma values of 0.01,0.1,1,10, 
and kernel 'C' values of 0.1,1,10,100. 

S3.17.1.2  SVM discrimination of proximal DHS from random background 
We perform step #1 as in section S3.17.1.1   
(2) We assign positive labels to all DHSs within +/- 2500bp of a GENCODE Tx Start. These 
DHSs are considered proximal-DHSs.  
(3) Next, we begin collecting the negative SVM training examples. First, all ENCODE regions 
are broken into contiguous 250bp segments. Segments located within 2kb of a proximal-DHS are 
removed from the data set.  
(4) All segments are expanded to 1kb.  
(5) We assign the mean score from each histone assay to the corresponding 1kb segment. Any 
segments that do not have an associated score are removed from the data set.  
(6) Since the resulting negative data set is quite large, we randomly sample segments until we 
have satisfied a ratio of 2 negatives examples for every positive example.  
We then perform steps 7-10 as above. 

S3.17.1.3  SVM discrimination of distal DHSs from background 
We perform step #1 as in section S3.17.1.1.  
We then assign positive labels to all DHSs that are more than 10kb from the nearest GENCODE 
Tx Start. These DHSs are considered distal-DHSs.  
We then perform steps 3-7 as in section S3.17.1.2  

S3.17.1.4  ROC curves for individual histone marks (simple classifiers) 
The individual feature ROCs are determined by comparing the distribution of individual feature 
data to the training labels. The feature data is sorted in reverse order, and then the list of labels is 
traversed. Each time a label occurs out of order, the false positive count increases. If labels are in 
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consecutive order, the true positive count increases. The entire list is traversed in this manner. 
The resulting labels are plotted. The area under this curve is the feature-roc 'score'. 
 

 
Supplementary Figure 34: Inputs to the two SVMs for discriminant training and their 
resulting performance. Panel A shows the classifier for distinguishing proximal from distal 
sites. Panel B shows the classifier for distinguishing TSSs from expressed vs non expressed 
transcripts. In each case, the upper portion summarizes the training data, while the lower 
portion consists of the Receiver Operating Characteristic (ROC) curves, in which the 
percent true-positive results (y-axis) are plotted as a function of the percent false-positive 
results (x-axis). A perfect classifier would have a step function that immediately achieves 
100% true-positive results with no false predictions. A random classifier is a diagonal line 
between the bottom left and top right. The thick red line in each case shows the ROC curve 
of the SVM, whereas the different dashed lines show the curves for each individual mark 
independently. 
 

S3.17.1.5  Correspondence of SVM identified TSSs with Gencode and Tag derived TSS 
categories. 

 
The correspondence of the 110 top scoring TSSs identified by the SVM on the basis of Histone 
signals around DHSs to the category A-F TSSs in Table 3 (of the main paper) was investigated. 
 
The category A-F TSSs were characterised by a single genomic coordinate and the SVM-TSSs 
by an arbitrary 250bp region. 
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As the methodologies underlying the SVM-TSS identification have a poor resolution in base-pair 
coordinates we considered overlap to have occurred if features from the two classes fell within 
2500bp of one another. 
 
Overlap analysis of the SVM-TSSs with the category A-F TSSs using the Genome Structure 
Correction (see section S1.3 ) for probability estimation is shown in Supplementary Table 17. 
The total number of SVM-TSSs located within 2500bp of a category A-F TSS was 93. 
 

Supplementary Table 17: Counts of the numbers of SVM-TSSs falling within +/- 2500 bp of 
Category A-F TSSs and the probability of this occurring by chance – calculated using the 
GSC statistic.  Note: the sum of the counts totals more than 110 as a given SVM-TSS can lie 
within 2500bp of more than one Category TSS.  

TSS 
Category 

Observed Overlay
(count of SVM-TSSs)

p value 

  
A 73 4.52E-018 
B 51 3.05E-005 
C 42 1.11E-016 
D 32 9.87E-008 
E 18 2.62E-043 
F 38 1.26E-006 

 

S3.17.2  CART Analysis of gene status 
CART as employed here is a classification algorithm – its background and theory are given in 
Classification and Regression Trees107.  Like all such algorithms it constructs a rule for 
prediction of a particular label from a given set of variables.  Again, like all such algorithms, 
CART needs to be provided with a training set, that is, a set of labeled examples from which to 
construct the rule.  Once constructed, the rule’s performance is ideally judged on a test set for 
which the predictions of the classifier can be compared to known, true labels.  CART is a tree 
structured algorithm.  How it works is best illustrated when there are only two possible labels, 
for example, 0 and 1.  Say we are given a categorical prediction variable with 10 possible 
categories and a real valued prediction variable.  CART considers two types of rules based on 
one variable.    
 
For the categorical variable Y, the possible rules are an assignment of one of the two classes to 
each category.  For instance, “If Y is category v, then assign label 0, else, assign label 1.”  For the 
real variable X, the rules are of the form, “Assign label 0 if X < c and 1 if X > c, where c and the 
label identities are free.  Each such rule can be framed as a question, such as above, with an 
answer: Yes, say, for a label 0, and No for a label 1.  
 
The program picks the “best” question (according to a purity measure described107 based on any 
one of the predictor  variables, represents it as the root of the tree, and places the cases according 
to their answers.  The resulting nodes are then subjected to the same procedure until all nodes 
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contain cases with the same label.  The tree is then “pruned” back, since the pure tree, which, by 
construction, behaves optimally on the training sample, performs poorly on the test sample. 
Various methods of pruning are described in Breiman et al107.  Performance on the test sample 
yields estimates of misclassification probabilities.  Care has to be taken if the proportional sizes 
of the sets of examples corresponding to each label in the training set do not reflect their 
expected values in the population.  Modifications to take care of such cases and the parallel 
situation that misclassification of one label is more serious than that of the others are available in 
the CART program. 
 
Tree structured rules have the advantage, which we try to employ, that, if the signal is strong, the 
order of the variables used in the “best” questions and their success in classification at the 
appropriate node give an indication of which variables may be important.   
 
Here, we have utilized CART to predict gene expression status based on several genomic and 
epigenomic variables, both categorical and real valued.  We discovered that histone 3 lysine 4 
methylation status (i.e. H3K4me1, H3K4me2, and H3K4me3), along with a measure of DNase 
sensitivity was sufficient to build high-quality predictors of gene expression status within, and to 
a lesser extent, between cell lines.  Some of the input variables, such as CpG status (a 1,0 
categorical variable indicating whether the transcription start site of the given gene occurs in a 
CpG island), appear to hold little to no predictive value in the presence of the other predictors, 
while others provide highly incisive questions, whose answers result in accurate labels for both 
training set and test set data.     

S4  Chromatin architecture 

S4.1 Replication Timing: Data generation and Analysis 

S4.1.1  Determination of replication time of ENCODE regions 
HeLa cells were synchronized by a thymidine aphidicolin block and released from the block. As 
cells passed synchronously through a 10 hr S phase, they were labeled for 2 hr intervals with 
Bromodeoxyuridine starting at 0, 2, 4, 6 and 8 hrs. The BrdU labeled DNA was purified by two 
cycles of CsCl density gradient centrifugation, labeled and hybridized to the genome tiling 
arrays. Details of protocols and data processing are published in Jeon et al7 and Karnani et al8. 
 

S4.2 Correlations between continuous chromatin and replication datatypes 

S4.2.1  Sliding window correlations 

S4.2.1.1  Background 
“Continuous” datatypes refer to those data that take on real values at nearly regularly-spaced 
intervals along the genome. Examples incude DNaseI sensitivity and DNA replication timing. 
This is in contrast to “discrete” datatypes that are elemental in nature, such as locations of 
DNaseI hypersensitive sites. The primary challenge for continuous analysis is the issue of scale. 
As inputs to the analysis, we are dealing with apparently disparate datatypes, collected at 
different resolutions and scales.  Sanger histone modification strength data, for instance, is 
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available at a resolution of approximately 1kb, while PhastCons conservation scores are 
available at every base. We also have an issue of scale on the output side, in that we want to 
uncover trends in the data that may be occurring at multiple scales. 
 
The primary tool we use to address the challenge of scale is wavelets108, a mathematical tool 
pioneered in the field of signal processing. Wavelets provide a framework for decomposing a 
given data type into increasingly coarse scales, allowing broader and broader trends in the data to 
reveal themselves. As opposed to Fourier analysis, which also provides a decomposition of a 
given signal in terms of multiple scales (frequencies), wavelet analysis localizes behavior in both 
frequency and “time” (genomic position, in our case), and is thus better suited to pick up 
transient behavior. Wavelets have been used for the analysis of genomic data to uncover local 
periodic patterns in DNA bending profiles109 and gene expression data110, 111, to predict protein 
structures112, and to correlate a variety of genomic data on multiple scales in microbial 
genomes113. We use wavelets to visually represent individual datatypes on multiple scales at 
once, using wavelet scalograms, or heatmaps. Wavelets also provide a method to normalize pairs 
of datatypes to a common set of scales, allowing us to perform quantitative correlations on a 
scale-by-scale basis. 
 

S4.2.1.2  Continuous wavelet transformation 
Wavelet analysis makes use of two types of transform, the continuous wavelet transform (CWT) 
and the discrete wavelet transform (DWT).  The CWT is defined for a time series x(t) at each 
time t and scale a by 
 

 
where ψ(t) is the wavelet function of choice. For this analysis we use the first derivative of 
Gaussian (DOG) wavelet, implemented in the R package Rwave. In this implementation the 
DOG wavelet is complex-valued, and the absolute value |W(a,t)| can be taken to represent the 
strength of the change in the original function x at scale a and location t. Thus for fixed a, 
|W(a,t)| can be thought of as a representation of x(t) at scale a. The Rwave wavelet functions are 
scaled so that the wavelet scale a is approximately equal to the equivalent Fourier period of a 
periodic feature in the original data, a fact we verified experimentally. 

S4.2.1.3  Discrete wavelet transformation 
The discrete wavelet transform (DWT) is essentially defined by restricting the CWT to time 
series sampled at discrete, equally-spaced time points, and by restricting the scales to the dyadic 
intervals , where δ is the resolution of x.  The DWT requires that the input sample x be 
of length equal to a power of two.  A key feature of the DWT, not available for generic CWTs, is 
the multiresolution analysis. This gives, for each user-defined maximal level J corresponding to 
scale 2Jδ, a scale-by-scale decomposition of x into separate components, 
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Here the Dj, or details, represent the local change in x at the scale 2jδ, and the smooth SJ 
represents a smoothed version of x at the scale 2Jδ.  The Dj and SJ are each the same length as x.  
For this analysis, we use a variant of the DWT called the maximal overlap DWT (MODWT), 
which allows x to be of arbitrary length.  We use MODWT smooths for computing higher-order 
functional domains (see section S4.7 ) and for smoothing datasets in preparation for further 
analysis (see section S4.2.1.4 ).  For all calculations we use the R package waveslim, and its 
implementation of the Daubechies “least asymmetric” LA(8) wavelet filter.  We use reflection 
boundary conditions for computing multiresolution analyses. 
 

S4.2.1.4  Preparation of ENCODE data sets for wavelet analysis 
Implementations of the CWT and MODWT require input datasets to be equally-spaced.  We thus 
define a nominal scale for each ENCODE dataset based on the assay used in each case (50bp for 
DNaseI sensitivity, 1kb for Sanger histone modifications, for instance).  We then construct 
equally-spaced datasets at the nominal scale using the following interpolation scheme.  Gaps less 
than 2kb are filled using linear interpolation between the existing flanking data points.  For gaps 
greater than 2kb, a linear loess curve is fit at each interpolated position, using data within a 
centered window of width equal to 50 times the gap length.  We use R function loess with 
default weights.  To compare datasets with disparate nominal scales, we transform the dataset 
with the finer nominal scale by computing its MODWT wavelet smooth (see section S4.2.1.3 ) at 
the dyadic scale closest to coarser scale. 
 

S4.2.1.5  Wavelet correlations and correlation heatmaps 
Wavelet correlation heatmaps quantify the degree of local correlation between two genomic 
series on a scale-by-scale basis. For fixed scale a and genomic position t0 the wavelet 
coefficients at scale a for the two series are computed in a 20kb window centered at t0. The 
Pearson correlation coefficient is then computed on the two 20kb segments. The color in the 
correlation heatmap at location (t0,a) represents the correlation coefficient so computed, ranging 
from red (high) to yellow (none) to green (low). We use the DOG wavelet for computing wavelet 
correlations. 
 

Supplementary Table 18: Significance of differences in sliding window correlation 
distributions. Wavelet sliding window correlation values between DNaseI and five 
activating histone modifications were computed as described above, and accumulated at 
the 16kb scale across all of ENCODE.  The resulting distributions of correlation values 
were compared pairwise using the one-sided Kolmogorov-Smirnov test (R function ks.test).  
P-values, included below, were computed for the null hypothesis that the distribution for 
one mark (given by the row labels) is not greater than the distribution for the other mark 
(given by the column labels). 

 H3K4me2 H3K4me3 H3K4me1 H3ac H4ac 
H3K4me2  3.367152e-02 1.890608e-59 0.00982103 5.696281e-35 
H3K4me3 0.008147442  1.391836e-63 0.01158146 1.667976e-36 
H3K4me1 0.995825313 9.582033e-01     0.98030121 5.423018e-01 
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H3ac 0.001563221 2.519860e-06 1.118025e-55     1.465513e-33 
H4ac 0.997792115 9.950358e-01 6.036933e-05 0.98488594     
 
 

S4.2.1.6  Non-wavelet sliding window correlation for TR50 comparisons 
Correlations with DNA replication timing data, as represented by the TR50 curve, are handled 
separately.  This is due to the highly smoothed nature of the TR50 data, which gives features that 
are of a scale beyond those used for the wavelet analyses of other datatypes. To reach the 
apparent scale of the TR50 data, we performed loess smoothing on the other datatypes. We 
experimented with a number of different window widths for loess smoothing -- a visual check 
revealed that a 100kb smoothing window produced features comparable to those of the TR50 
data. Local correlations between TR50 and the loess smoothed datatypes are computed using a 
sliding window of 250kb, as in the previous section. This gives a vector of correlation values at a 
single scale (that of the loess smoothed data) as opposed to the multiple scales computed for 
other datatypes using wavelets. 
 
 

S4.3 Correlations of histone modifications with TR50 at discrete points in the 
genome 

In addition to the sliding window correlation analysis reported in Figure 7a, we computed a 
histogram of correlation values obtained for each histone modification vs. TR50 across all of 
ENCODE, and plotted these as a function of correlation value (Supplementary Figure 35).  As 
expected, the activating marks were mostly negatively correlated with TR50, although there were 
occasional areas of positive correlation. H3K27me3 displays a greater heterogeneity of 
correlation , with the positive correlation slightly predominating. Indeed, experiments on random 
data indicate that the observed fraction of highly positive correlations of H3K27me3 (> 0.5)  is 
statistically significant, with empirical p-value of 0.005 (see Supplement S4.3.1 ).  The positive 
correlation is consistent with the enrichment of H3K27me3 in late replicating regions , and its 
depletion in early replicating regions, illustrated in Figure 7b.  In mouse histone modification 
H3K27me3 is targeted to the promoters of genes that also exhibit high levels of H3K4 
methylation in stem cells where repressed promoters are held poised for activation114.  
Intriguingly, this bivalent state disappeared in differentiated cells.  A reappearance of the 
bivalent state in cancer cells could provide a potential explanation for the appearance of 
H3K27Me3 in early replicating regions in HeLa cells. An alternative explanation might be based 
on the interallelic variation in time of replication (pan-S replication) and interallelic variation in 
chromatin structure described in the text. 

S4.3.1  Statistical significance of positive correlations between H3K27me3 and 
TR50 

Sliding window correlations between TR50 and loess-smoothed H3K27me3 were computed as 
in section S4.2.1.6 and the resulting distribution of correlation values is displayed in 
Supplementary Figure 36. We observed that 28.3% of all ENCODE-wide sliding correlation 
values were greater than 0.5. To test the statistical significance of this result we performed 
sliding window correlation analysis on random data, simulated by randomly sampling the 
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H3K27me3 and TR50 datasets separately. Specifically, data for each of H3K27me3 and TR50 
are concatenated across all of ENCODE to form two master datasets.  Each sample experiment 
consisted of choosing, for each ENCODE region, a chunk of contiguous data of the same size as 
the given ENCODE region but starting from a random location in the H3K27me3 master dataset, 
and a separate same-sized chunk from a different random location in the TR50 master dataset.  
This was repeated for all 43 ENCODE regions (the TR50 data does not cover ENm011), and 
sliding window correlation was performed on the resulting 43 paired datasets. The sample 
experiment concluded by comparing the accumulated distribution of correlation values against 
the observed distribution.  Out of 1000 such experiments, five produced distributions whose 
fraction of highly-positive correlations (>0.5) exceeded the observed fraction of 28.3%, for an 
empirical p-value of 0.005. 

S4.3.2  Details of data analysis for Figure 7a 
Data for H3K4me2 and H3K27me3 are loess smoothed as described in section S4.2.1.6  and 
local correlations with TR50 are computed in a sliding 250kb window.  The graphs are colored at 
each position to reflect the value of the local correlation at that point, with red representing 
positive correlation, green for negative correlation, and yellow for no correlation. Enrichment in 
Fig. 7a measures the strength of the signal for a particular mark at that location relative to the 
negative control ChiP.  For H3K4me2 this is measured as the fold-enrichment while for 
H3K27me3 the measure is the negative log P value of the significance of enrichment. 
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Supplementary Figure 35: Smoothed histograms of all sliding window correlation values 
(of indicated histone modification enrichment versus TR50) computed as described in 
Section S4.3.2 and accumulated across all of ENCODE. The indicated histone 
modifications are largely anti-correlated with TR50. The vertical dashed lines indicate the 
mean correlation value for that mark.  The smoothed histogram was computed and plotted 
using R function density(), using default optional arguments. 
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Supplementary Figure 36:  A smoothed histogram similar to that in Supplementary Figure 
35 for the correlation of H3K27me3 with respect to TR50. 

 

S4.4 Chromatin:Replication enrichment analysis 

S4.4.1  Distribution of active chromatin elements in regions with different 
replication timing 

When we compare active chromatin elements with replication timing, we can determine how 
many base pairs of a given modification fall into each of the replication classes. If there were no 
relationship, then at random distribution would expect the active chromatin elements to fall into 
roughly the same percentages given above. However, this is not the case. For example, roughly 
34% of the base pairs of the Sanger H3K4me1 HeLa data set fall into early replicating segments. 
So we see a ratio of 34%/23.36% = 1.45 of what we would expect at random. This means that 
H3K4me1 elements are +45% enriched in early replicating segments. We can calculate a p-value 
for this enrichment by randomizing the positions of the H3K4me1 elements in the ENCODE 
regions in order to calculate a distribution of expected overlap. By doing so we find that this 
enrichment is significant at better than 1 in 10,000 iterations, corresponding to a p-value of less 
than 0.0001. 
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The H3K27me3 data covered 1,230,522 base pairs in the ENCODE regions (which total.  
approximately 30,000,000 base pairs).  The corresponding numbers for the other marks are 
H3K4me1.HeLa 1,931,448, H3K4me2.HeLa 932,980,H3K4me3.HeLa 743,454, H3ac.HeLa 
833,122, H4ac.HeLa 869,186.  Thus the different behavior of H3K27me3 cannot be explained as 
an artifact from the statistics of small numbers. 
 

S4.4.2  P-value calculation for enrichment analysis 
In order to calculate significance values for the enrichment of active chromatin elements in early, 
mid, late, and panS replicating segments, we randomized each set of active chromatin elements 
within the ENCODE regions. For the Sanger data, 43 of the ENCODE regions (excluding 
ENm011 for which replication data is not available) were included in the random model. For a 
given iteration of the model, each interval in the active chromatin element set in question was 
randomly placed within the 43 ENCODE regions. These randomly placed segments were not 
allowed to overlap or to ‘hang over’ the end of an ENCODE region. Then the amount of overlap 
with each replication category was calculated. This randomization was repeated for 10,000 
iterations producing a distribution of overlaps for the active chromatin element in question. Then 
the actual amount of overlap was compared with the distribution in order to calculate a p-value 
for this enrichment. For example, if only 1 of the 10,000 iterations produced an amount of 
overlap greater than the actual overlap, then this enrichment has a p-value of 1/10000 or 0.0001. 
Generating a distribution where the actual overlap is greater than all of the 10,000 iterations 
would indicate a p-value less than 0.0001, and this is the limit of our analysis with 10,000 
iterations. In order to fairly assess our p-values in the presence of multiple tests, we used 
Bonferroni correction to ascertain a level of p-value beyond which there would be a 0.05 
probability that any of the reported significant p-values were actually insignificant. This level 
corresponded to p-values of 0.0013 or less. Hence all of the enrichments reported significant are 
significant at a p-value of 0.0013 or less which leads to a probability of 0.05 or less that any of 
the reported significant enrichments are actually insignificant.  

S4.5 Histone modification patterns of DHSs 

S4.5.1  Distribution of histone modification signals around DHSs 
Our aim was to determine the average distribution of activating histone marks around DHSs 
centroids. A DHS centroid is the genomic coordinate marking the midpoint of a DHS segment, 
around which the DNaseI sensitivity signal is approximately symmetric by mass. We used the 
common DHS set described above as inputs. Because we wished to examine a 10kb window (+/- 
5kb on either side of the DHS centroid), we filtered the DHS data to select only a single DHSs 
within a 10kb interval. Next, the 10kb segments are broken into contiguous bins of 100 bases, 
producing 100 bins for each 10kb segment. We now determine the distribution of Histone scores 
by assigning each 100bp bin the mean value of the corresponding segment in the Sanger histone 
assays. In the same manner, we map the underlying score from the DNase/Array data to each 
corresponding 100bp bin. Each expanded DHS is now associated with 100 scores from each of 
the 5 Histone mod assays and the DNase/Array data. In the next step, we average each bin from 
the entire set of expanded DHSs to produce an aggregate 100bp distribution. If a 100bp segment 
did not contain any underlying data from a particular assay, the value is not considered in the 
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average. This provides a comparison of the distribution of histone marks and DNaseI sensitivity 
averaged over a large group of DHSs. 

S4.5.2  Histone modification patterns of proximal and distal DHSs 
For each DHS, we first calculate the distance to the nearest GENCODE gene TSS. We then 
filtered DHSs according to their distance from the TSS. For example, all DHSs within 2.5kb of 
any GENCODE tx start are considered one group, and DHSs greater than 10kb from any DHS 
are considered another group. We perform the analyis using the following distances <2.5kb, 
>2.5kb, >5000, >10000, >12500, >15000, >20000, >25000, and >30000. Using this selection 
strategy, the input data at each increasingly larger distance is a subset of all smaller distances. 
We then perform the following steps on each distance grouped DHS set: First, we calculate the 
centroid position of each DHS. Next, we expand all centroids by 5000bps in the 5' and 3' 
directions, creating a set of segments of length 10kb, centered on the DHS centroid. In a second 
pass, all overlapping segments are considered. If a segment overlaps a segment that has a higher 
average DHS score, the lower scoring segment is removed from the analyis. In this way, the 
analysis considers only 10kb segments with the strongest underlying DHS signal. The DHS score 
used to resolve overlaps is the score associated with each DHS in the underlying DNase/Array 
data set.  Next, the 10kb segments are broken into contiguous bins of 100 bases, producing 100 
bins for each 10kb segment. We now determine the distribution of Histone scores by assigning 
each 100bp bin the mean value of the corresponding segment in the Sanger histone assays. In the 
same manner, we map the underlying score from the UW-CAP array to each corresponding 
100bp bin. All mapped scores are transformed to z-scores by using the mean and standard 
deviation of all data points in the underlying ENCODE assay. The purpose of converting to z-
scores is to enable relative comparisons between the different histone marks. Each expanded 
DHS is now associated with 100 scores from each of the 5 Histone mod assays and the UW CAP 
DNaseI array. In the next step, we average each bin from the entire set of expanded DHSs to 
produce an aggregate 100bp distribution. If a 100bp segment did not contain any underlying data 
from a particular assay, the value is not considered in the average. For each assay the resulting 
data is 100, 100bp bins of average score covering the 10kb DHS segment. # of DHSs in each 
dataset (+/- 5kb sets): <2500: 355; >2500: 639; >5000: 489; >7500: 410; >10000: 355; >12500: 
305; >15000: 271; >20000: 218; >25000: 183; >30000: 158. 
 

S4.6 Identification and analysis of CORCS 

S4.6.1  Alignment of hydroxyl radical cleavage patterns Gibbs sampling 
Hydroxyl radical cleavage patterns were predicted for the 3,150 DNA sequences in the Union 
DHS dataset using data from experimentally determined cleavage patterns. The values in each 
pattern were then binned into 50 levels of cleavage intensity and aligned by a Gibbs sampling 
algorithm115. In order to improve efficiency, the dataset was divided at random into smaller 
subsets of 300 sequences prior to alignment. The motif width was fixed to a length of 8 bp. The 
sampler was run until there was no further improvement in the aligment score for 5 complete 
iterations through the dataset. This process was repeated 10,000 times. Motifs exhibiting a high 
cleavage intensity to sequence conservation ratio116 were retained for further analysis. To 
determine the enrichment of the CORCS profile for DNase hypersensitive sites relative to the 
complete ENCODE regions, we used an algorithm similar to MatInspector117 to assess the 
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similarity between the candidate CORCS profiles and each overlapping window of the predicted 
hydroxyl radical cleavage patterns of the ENCODE regions. The top-scoring 0.001% of these 
windows were recorded to a BED-format file and analyzed for enrichment. 

S4.7 Identification of higher order domains by multi-track HMM 
segmentation 

 
We define functional domains by segmenting the ENCODE regions using hidden Markov 
Models (HMMs). The basic premise of HMMs is that observed data are generated stochastically 
from a pre-determined number of hidden background probability distributions, or states.  In our 
case we set the number of states to two, in the hopes of distinguishing between functionally 
active and inactive domains, and perform simultaneous, multi-variate HMM segmentation on six, 
ENCODE-wide datasets: TR50, H3K4me2, H3K27me3, Affy RNA Signal, DHS (DNaseI 
hypersensitive site) density, and RFBR density.  The first four of these datasets are measured in 
the HeLa cell-line.  DHS density is computed by first merging HS detected in HeLa using all 
three methods described in S3.3, and then computing the fractional occupancy of the HS in a 5kb 
window sliding every 1kb along the genome.   RFBR density is computed by first considering 
the RFBRs defined at the 5% FDR (see section S3.10  and then computing the fractional 
occupancy of those RFBRs in a 5kb window sliding every 1kb along the genome. We choose to 
represent each of the two HMM states by four independent Gaussian distributions (the emission 
probabilities). These parameters, plus the four transition probabilities between states, are learned 
via unsupervised expectation-maximization. The final state values (0 or 1, interpreted a posteriori 
as "inactive" or "active") for each genomic position are then computed using the Viterbi 
algorithm. 
 
To normalize the six datasets, we use MODWT wavelet smoothing (see section S4.2.1.3 ) to 
bring all datasets out to a common scale.  As described in Thurman et al118, as the scale 
increases, individual segment lengths generally increase.  We desire that the median functional 
domain segment length be larger than the average gene size of 25kb, and that the minimum 
segment length be larger than 10kb (still larger than ~50% of human genes).  After performing 
segmentations on individual and combined wavelet-smoothed datasets at a variety of scales, we 
used these criteria to arrive at 60kb for the common wavelet scale for smoothing all datasets.  All 
datasets are preprocessed before wavelet smoothing as described in S4.2.1.4   The nominal 
resolutions after preprocessing are:  TR50, 50bp; H3K4me2, 1000bp, H3K27me, 1000bp, Affy 
RNA Signal, 50bp, DHS density, 1000bp; RFBR density, 1000bp.  The closest dyadic scale to 
60kb for each dataset is then used for final wavelet smoothing.  The final scales are: TR50, 
51.2kb; H3K4me2, 64kb; H3K27me3, 64kb; Affy RNA Signal, 51.2kb; DHS density, 64kb; 
RFBR density, 64kb.  
 
 

S5  Evolution and Population Genetics 

S5.1 Conservation of regulatory elements 
The possibility that MCSs within RFBRs preferentially occur at Transcription-Factor binding 
sites was investigated. 
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Transcription factor motif Position Weight Matrices were obtained from TRANSFAC99 except 
for E2F1, Mycn, Sp1 and HNF4 which were obtained from JASPAR119. The potential 
transcription factor binding sites in the encode regions were identified as follows. For each 
matrix all possible string permutations of the nucleotides were generated where the frequency of 
occurrence of the nucleotide at that position in the string exceeded 0% and the bit-score for the 
string exceeded 0.8 * the number of nucleotides in the motif.  The collection of strings for each 
motif were then mapped by exact matching to the ENCODE regions. 
 
For each transcription-factor-associated RFBR in the 1% and 5%  hitlists three coverage 
statistics were determined. A. The number of nucleotides occupied by the associated motif in the 
region +/- 150 bp around the hit peak coordinate, B. The number of nucleotides occupied by the 
the moderate MCSs contained within the RFBR region and C. The number of nucleotides 
occupied by the associated motif within the contained MCSs. The enrichment of the motif in the 
MCS was then calculated as 100 * (100 * C/B)/(100 * A/301) for each RFBR which contained 
the relevant motif. 
 
Although all 17 motifs used had mappings in the ENCODE regions, only 12 had mappings 
which fell inside the associated 1% FDR RFBRs. For 6 of these 12, the MCSs were enriched 
with respect to the RFBR for the motif (Supplementary Table 19). The same motifs exhibited 
enrichments in the 5% FDR RFBRs and in addition the motif RAR was found in a number of the 
RFBRs and showed enrichment in the MCSs (Supplementary Table 20). 
 

Supplementary Table 19: The relative percentage cover with the named motif of MCSs 
relative to the RFBRs in which they occur, together with the number of nucleotides in the 
RFBRs containing mapped motifs and the number of nucleotides in the MCSs in those 
RFBRs.  RFBRs identified as ChIP-chip defined binding regions at 1% FDRP Values 
above 100% indicate enrichment 

motif_name Enrichment_of_Motif_in_MCS bases_in_FDR bases_in_MCS 
    
C/EBP.M00770 681.7 3913 41 
CRE-BP1:c-Jun.M00041 24.1 1204 312 
E2F-4:DP-1.M00738 684.1 602 44 
E2F.M00803 95.6 18361 2890 
HNF-3.M00791 93.2 15050 1643 
HNF4 144 6622 368 
Mycn 129 121604 17536 
p53.M00761 0 301 71 
PU.1.M00658 150.2 3612 347 
SP1 90.1 43344 4799 
STATx.M00223 129.5 6923 1443 
USF.M00217 34.7 14147 697 
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Supplementary Table 20: The relative percentage cover, with the named motif, of MCSs 
relative to the RFBRs in which they occur, together with the number of nucleotides in the 
RFBRs containing mapped motifs and the number of nucleotides in the NCSs in those 
RFBRs.  RFBRs identified as ChIP-chip defined binding regions an 5% FDC.  Values 
above 100% indicate enrichment. 

motif_name Enrichment_of_Motif_in_MCS bases_in_FDR bases_in_MCS 
    
C/EBP.M00770 245 6020 117 
CRE-BP1:c-Jun.M00041 39.4 4515 606 
E2F-4:DP-1.M00738 327.2 1505 230 
E2F.M00803 93.1 22575 3794 
HNF-3.M00791 94.9 24381 2108 
HNF4 174.4 10836 1056 
Mycn 123.2 173978 22424 
p53.M00761 0 301 71 
PU.1.M00658 157.5 8127 553 
RAR.M00762 163.1 2408 328 
SP1 79.9 74347 7534 
Sp3.M00665 0 1806 126 
STATx.M00223 134.9 9632 1648 
USF.M00217 66.6 24381 1335 

 

S5.2 Genetic Variation and experimentally-identified functional elements 

S5.2.1  Feature-based Modified McDonald Kreitman MK and HKA tests 
For the MK test a 2 x 2 contingency table was generated for each feature with one column 
containing the number of non 4-fold degenerate (4D) polymorphic and divergent sites within a 
feature and the other the number of polymorphic and divergent sites within 4D sites.  A chi-
square value was calculated on the resulting 2 x 2 contingency table. To infer the direction of 
selection, the neutrality index120 was calculated for each 2 x 2 table as follows: NI = (Non-4D 
Poly / Non-4D Div) / (4D Poly / 4D Div). NI = 1 indicates neutrality.  NI > 1 indicates an excess 
of polymorphism or deficit of divergence and NI < 1 indicates an excess of divergence or deficit 
of polymorphism.  
 
To test specific ENCODE region features sets against expectations from neutral theory; we 
performed multi-locus Hudson-Kreitman-Agaudé tests121, comparing the observed versus 
expected numbers of segregating sites and fixed differences within and between humans and 
chimpanzees respectively. We have performed a modified version of the original HKA test, 
which generalizes the original 2x2 approach of Hudson et al121 to a multilocus setting in which 
loci consist of those ENCODE regions that belong to the same feature. Parameter estimates for 
the model (locus-specific mutation rates, and a genome-wide speciation time) were obtained by 
numerically solving the system of equations n + 1 equations, where n is the number of loci, as 
described in Hudson et al121. Numerical analysis of this system of equations was performed 
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using open source routines implemented in the Gnu Scientific Library (GSL; 
http://www.gnu.org/software/gsl/).  
 

 
Supplementary Figure 37: The contrast of mMK neutrality index (NI)120 on the x-axis to 
the percent of elements that had an excess of polymorphism per ENCODE feature set 
based on the HKA test on the y-axis. 
 
It is important to note that we expect the complicated nature of human demography to cause 
genome-wide deviations from the standard neutral model and it will generate statistically 
significant signals with the MK and HKA tests. However this deviation should affect all loci to 
approximately the same extent122, thus loci which have also been influenced by the historical 
actions of natural selection should be expected to deviate to a greater degree from our model’s 
expectations.   
 
Principle of the multilocus HKA test: 

N individual loci of the same feature 
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Test of heterogeneity on a 2xn table by solving the n+1 equations as mentioned in the methods 
 
Principle of the MK test: 

 
 
Fisher’s exact test or chi2 test on a 2x2 table 
 

S5.2.1.1  Linkage Disequilibrium and Recombination Rate analysis 
Recombination events can cluster within precisely localized recombination hotspots123, and 
intermarker intervals exhibiting rapid breakdown of linkage disequilibrium can be used to 
localize these hotspots without direct measurement of recombination rates124. To identify 
intervals with rapid breakdown of linkage disequilibrium, we systematically evaluated intervals 
defined by a pair of consecutive SNP markers separated by <10,000 bps. For each interval, we 
considered the two SNPs and five equally-spaced flanking markers spanning 40 kb on either side 
of the interval (for a total of 12 markers) and calculated the maximum spanning r2 coefficient by 
considering all 36 pairings of flanking markers125. Intervals without six genotyped markers 
within the flanking 40 kb on either side were deemed to be inadequately covered and were 
excluded from this analysis.  
 
We then categorized each interval between markers using two criteria: whether or not the region 
included a feature of interest and whether or not the spanning r2 value was greater than 0.20 in 
the YRI population.  We then used logistic regression to determine the level of association 
between the two characteristics (i.e. to determine whether the presence or absence of a particular 
feature made an interval more or less likely to exhibit rapid breakdown of disequilibrium). We 
summarized effect size in an odds ratio. We controlled for ENCODE region, GC content, and 
interval length by including appropriate covariates in our regression model.  Approximately 8% 
of the total ENCODE sequence was in intervals with spanning r2 less than 0.2.  We chose 0.2 as 
our cut-off because it captured a low level of LD and it gave us enough power to detect an 
association. We repeated the analysis with a spanning r2 cut-offs of 0.1 (3% of all sequence) and 
0.4 (19% of all sequence) and obtained similar results.  
 
We also included in our analysis estimated recombination rates computed as part of the 
International HapMap Project37.  These recombination rates were made on the basis of data from 
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all four populations. We performed a similar logistic regression comparing the odds of having a 
recombination rate greater than 3 per feature. Roughly 11% of the sequence was included in 
intervals with recombination rate estimates of 3 cM/Mb.  Again, we controlled for ENCODE 
region and interval length. The use of different recombination rate thresholds, of 10 cM/Mb (3%) 
and 1 cM/Mb (25%), did not appreciably change the results. Results using recombination rate 
estimated from Perlegen were consistent with the results from the HapMap data.  
 
To assess the significance of our results, we performed simulation analyses.  Since we wanted to 
preserve the underlying structure of the ENCODE regions, we circularly permuted the features 
within each region.  To do this, we increased the start position of all features by a given value. 
The resulting features that fell outside the ENCODE region were pushed around to the start of 
the region.  We then repeated our initial analysis a hundred times with the original LD (or 
recombination rate) pattern and the permuted features.  
 

 
Supplementary Figure 38: The contrast of the log10 of the odds ratio of the Linkage 
Disequilibrium (LD) measure (y-axis) vs. the log10 of the odds ratio for the Recombination 
Rate measure (x-axis) for each ENCODE feature. 

S5.2.2  Segmental duplications (SDs) and Copy Number Variants (CNVs) in the 
ENCODE regions 

Segmental duplication mapping information was obtained from the University of California at 
Santa Cruz (UCSC; http://genome.ucsc.edu/) and from The Centre for Applied Genomics 
(TCAG; http://projects.tcag.ca/humandup/). Mapping information for copy number variants was 
obtained from the Database of Genomic Variants at TCAG (http://projects.tcag.ca/variation/). 
Information regarding annotated genes was obtained from the UCSC. All descriptive information 
regarding gene content in SDs and CNVs in ENCODE regions was obtained by matching 
genome coordinates in the different tables.  
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The assessment of the content of gene and transcript features in CNVs and SDs was performed 
after obtaining projections of the genomic localizations of CNVs and SDs. The assessment of 
statistically significant differences in their content was obtained using a permutation test in 
which positions of the features were randomly assigned 1000 times by Perl's random number 
generator, initialized using random seeds obtained from the /dev/random device. The p-value 
was calculated as the number of times that the data in the simulated set equals or exceeds the 
observed value from the real data, divided by the total number of permutations plus one. 
Analysis of the raw data generated by Perl scripts was performed using the statistical package R 
(http://www.r-project.org/).  

S5.3 Unexplained constrained sequences 
The distribution of constrained sequences is complex and highly clustered.  If the constrained 
sequences were distributed, in some sense, uniformly throughout the genome, we would expect 
their placement to appear as an alternating Poisson process.  In order to verify our visual 
intuition, we fitted exponential distributions to the distributions of constrained sequences in each 
ENCODE region.  Hence, we generated a null distribution 
for the start positions of constrained sequences.  A 1-sample KS-test was sufficient to discern 
between the two distributions in each region at a confidence level of p ~ 0.0001. 
 
We next sought to distinguish between the distribution of constrained sequences that overlap 
annotations from those that do not.  This can be done with a 2-sample KS-test.  However, the 
annotated constrained sequences (ACSs) and the unannotated constrained sequences (UCSs) are 
not, by definition, independently distributed.  Hence, the D-statistic in the 2-sample test will not 
have its usual null distribution.   
 
In order to compute the distribution of the D-statistic given the underlying genomic structure, we 
utilized a boot-strap sampling procedure detailed elsewhere in the supplement.  This procedure 
entailed choosing two samples of b blocks of length L from each region.  In either sample, the 
labels of the ACSs and the UCSs were ignored, and ascribed simply as general, or dummy, 
annotations.  This represents the hypothesis that both the ACSs and UCSs are being drawn from 
the same distribution.  The blocks were then concatenated to form samples of length R, where R 
is the length of the ENCODE region.  We performed a 2-sample KS-test on the start positions of 
the general annotations from their respective bootstrap samples.  Each iteration of this process 
provided one sample from the true null distribution of the D-statistic.  We performed 1000 
iterations, and computed the empirical p-values.  
 
We tested UCSs against ACSs, conserved sequences overlapping Exons, conserved sequences 
overlapping CDSs (exons excluding UTRs), and conserved sequences overlapping annotations 
excluding exons (Other).  In most regions we were able to discern between the distributions of 
the UCSs and the annotated conserved sequences, but, in many, no such discernment was 
possible.  Data for each pairing, in each region, is shown below.  P-values greater than 1 indicate 
insufficient sample size to perform any tests.   
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Supplementary Table 21: KS 2-sample test results: Comparing the distribution of 
Annotated and Unannotated constrained sequences by ENCODE region. 

Region UCS vs ACS UCS vs Exon UCS vs CDS UCS vs Other 
ENm001 0.0100 0.0010 0.0010 0.1279
ENm002 0.0220 0.0010 0.0120 0.0360
ENm003 0.0010 0.0010 0.0010 0.0010
ENm004 0.0010 0.0010 0.0010 0.0010
ENm005 0.0010 0.0010 0.0010 0.0010
ENm006 0.1239 0.0959 0.1688 0.1389
ENm007 0.0010 0.0010 0.0010 0.0010
ENm008 0.0619 0.0260 0.0969 0.0969
ENm009 0.0010 0.0010 0.0010 0.0010
ENm010 0.0080 0.0050 0.0010 0.0010
ENm011 0.8162 0.9471 0.2138 0.4705
ENm012 0.0629 0.1049 0.0010 0.0010
ENm013 0.0010 0.0010 0.0010 0.0010
ENm014 0.0010 0.0010 0.0010 0.0010
ENr111 0.0559 0.2248 0.0010 0.0010
ENr112 2.0000 2.0000 2.0000 2.0000
ENr113 2.0000 2.0000 2.0000 2.0000
ENr114 0.0929 0.0010 0.2488 0.2278
ENr121 0.0010 0.0010 0.0010 0.0010
ENr122 0.0010 0.0010 0.0010 0.0010
ENr123 0.0010 0.0010 0.0010 0.0010
ENr131 0.0010 0.0010 0.0010 0.0010
ENr132 0.0010 0.0110 0.0010 0.0010
ENr133 0.0240 0.0430 0.0070 0.0070
ENr211 0.0010 0.0010 2.0000 2.0000
ENr212 0.2378 0.1998 0.0010 0.0360
ENr213 0.0060 0.0030 0.0010 0.0010
ENr221 0.0010 0.0010 0.0010 0.0010
ENr222 0.0010 0.0040 0.0010 0.0010
ENr223 0.0010 0.0120 0.0010 0.0010
ENr231 0.0020 0.0010 0.0040 0.0010
ENr232 0.0010 0.0010 0.0010 0.0010
ENr233 0.0010 0.0010 0.0270 0.0170
ENr311 0.1279 0.1259 2.0000 2.0000
ENr312 0.0020 0.0010 2.0000 2.0000
ENr313 0.0010 0.0010 2.0000 2.0000
ENr321 0.0120 0.0110 0.0010 0.0010
ENr322 0.0140 0.0370 0.0010 0.0010
ENr323 0.0050 0.0040 0.0619 0.0080
ENr324 0.3816 0.6893 0.0549 0.0470
ENr331 0.0010 0.0010 0.0010 0.0010
ENr332 0.0010 0.0010 0.0010 0.0010
ENr333 0.0010 0.0010 0.0010 0.0010
ENr334 0.0899 0.1648 0.0010 0.0010
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S5.4 Unconstrained experimentally-identified functional elements 

S5.4.1  Diversity, Indel, and derived allele frequency (DAF) 

S5.4.1.1  Diversity Analysis 
Whole genome sequence data totaling one fold coverage of the human genome from DNA 
derived from a pool of cell lines from 8 unrelated adult African Americans, 4 male and 4 female 
enrolled in Houston, TX was used in these variation analyses37. The SSAHASNP software 
package126 was used to align these reads to the build 35 of the human reference sequence, 
generating polymorphism calls while keeping track of total bases aligned for each read. The 
subset of reads aligning to the 44 ENCODE regions were used in this analysis. Heterozygosity 
was calculated for each of the feature sets by totalling the number of single base substitutions 
within each feature, relative to the reference genome sequence, and normalizing by the number 
of aligned bases that agreed with the reference sequence.  
 

S5.4.1.2  Insertion-Deletion (Indel) Analysis 
Indel densities per base pair (bp) for the regions or feature of interest were estimated by 
calculating the number of indels within those regions or feature, as a proportion of the total size 
in base pairs of that region or feature. To ease interpretation, we multiplied the intensity by 
100,000 to provide an estimate per 100kb. 99% confidence intervals for indel densities were 
estimated using a negative binomial model with the number of indels as the response, and the 
lengths of sequence as an offset. This approach allowed for potential over-dispersion.  
 

S5.4.1.3  Derived allele frequency (DAF) in ENCODE features 
SNP density and diversity offer a good estimate of selective constraint but it is the use of the 
frequency spectrum of SNPs that allows for more rigorous analysis and a better representation of 
levels of variation. We have aligned all SNP positions to the chimp genome and have inferred 
the ancestral allelic state (the one shared with chimp). We then estimated the allele frequency of 
the inferred derived allele (the one NOT shared with chimp). In regions with high selective 
constraint we expect that the new (or derived) allele generally remain in low frequencies and 
most likely disappears from the population.  
 
We mapped all SNPs and their respective DAFs onto the ENCODE features and estimated the 
mean and frequency distribution of DAF values for different functional elements. To assess the 
statistical significance of the differences observed among features, we have performed two 
different statistical analyses: a) we compared the distribution of DAF SNP values for each 
functional element against the distribution in Ancestral Repeats (AR) using two non-parametrical 
statistical tests (Kolmogorov-Smirnov (KS) and Mann-Whitney (MW) tests). b) We performed 
10000 randomisations of elements within the same ENCODE region to analyse the average DAF 
for each group compared to the background. The randomisations allowed calculation of the Z-
score and empirical p-value. These analysis were performed separately for the 10 resequenced 
regions of ENCODE and the remaining 34 regions. Standard tests that explore the whole DAF 
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spectrum to infer selective sweeps127 are not appropriate in this case since the whole set of 
regions is being used and this violates assumptions of the tests about uniformity of 
recombination and mutation.  
 

 
Supplementary Figure 39: Mean Derived Allele Frequency (blue bars) with 1-P-values 
indicating deviation (upwards or downwards) from the DAF spectrum of ancestral repeats 
(ARs). 

 
We investigated whether there is a correlation between the DAF and the Genomic Evolutionary 
Rate Profiling (GERP) score from the Threaded Block Aligner (TBA).  Using the Spearman's 
rank correlation coefficient, rho, we quantified correlation between the mean DAF for all SNPs 
in each functional element and the GERP scores calculated for two groupings of species; 
mammals ,and primates excluding the human sequence from the calculation to avoid any biases 
the polymorphism data has to the estimation of the conservation score.  
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Supplementary Figure 40: Derived allele frequency (DAF) vs. GERP conservation score. 
(A). DAF vs. GERP primate score in all ENCODE SNP positions; (B). DAF vs. GERP primate 
score in all ENCODE SNP positions excluding SNPs in all CS feature sequences  

 
 

S5.5 Sensitivity of identifying evolutionary conserved bases 
To address the question of the sensitivity of our methods for identifying evolutionary constrained 
bases, we used the mixture decomposition methods employed in the comparative analysis of the 
human and mouse genomes128, 129 to estimate the fraction of bases that are constrained in regions 
outside of predicted MCSs.  For this analysis, we used average GERP scores in non-overlapping 
windows of 10bp.  In order to avoid biases due to alignment gaps and missing data, we only 
considered sites having enough aligned bases that the neutral branch length of the associated 
phylogeny was at least 0.5 substitutions/site, and we only considered windows with at least 8 
such sites.  We empirically characterized the score distribution for (1) windows in ancestral 
repeats ("AR") and (2) windows outside of "moderate" MCSs, ARs, and Alu transposons 
("other"), using Gaussian kernel smoothing methods as described in Chiaromonte et al129 
(Supplementary Figure 41).  Treating the AR distribution as a proxy for the distribution in 
neutrally evolving sites, we estimated a lower bound of 0.20 for the fraction of "other" sites that 
cannot be explained by the neutral (AR) distribution. 
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Supplementary Figure 41: Distributions of average GERP scores in 10bp windows in 
ancestral repeats (AR), multispecies conserved sequences (MCS; the "moderate" set is 
shown here), and sequences outside of ARs, MCSs, and Alu repeats (Other).  Only windows 
with at least 8 phylogenetically informative sites were considered.  The distributions were 
smoothed using the 'density' function in the R statistical computing package (Gaussian 
kernel, bandwidth 0.25, grid of 10000 equally spaced points) 

 
It is apparent visually from the distributions, however, that more of these non-neutral sites have 
low scores (hence are evolving faster than expected) than have high scores (Supplementary 
Figure 41), so 20% may be a substantial overestimate of the fraction of sites in the "other" 
category that have been missed by our methods.  It is not possible, without making assumptions 
about the score distributions for sites under selection, to decompose the "other" distribution into 
"fast", "slow", and "neutral" components.  However, if we are willing to assume that the slow 
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sites contribute negligibly to the left tail of the distribution and that the fast sites contribute 
negligibly to the right tail, then the two-part decomposition employed above can be applied 
separately to the right and left halves of the distributions.  We performed this analysis, cutting 
the "AR" and "other" distributions at the mode of the AR distribution, and arrived at approximate 
lower bounds of 3.9% of the "other" sites evolving slower and 12.7% evolving faster than 
expected under neutrality.  If we use our more inclusive set of MCSs (the "loose" set), then the 
slow fraction decreases substantially, to 1.4%, and the fast fraction increases slightly, to 14.3%. 
However, with the Loose set, there is still considerable proportion of elements which are not 
overlapping – 37% of DHSs, 64% of RaceFrags (see Table below) 
 
 
Element type Elements Bases Overlapping Bases %Overlapping %bp 

conserved 
3UTR 503 435996 412 163215 0.819085487 0.374349765
5UTR 679 115905 517 41745 0.761413844 0.360165653
AFFX_Brg1_HL60_seqsp 14 4470 11 984 0.785714286 0.220134228
AFFX_CEBPe_HL60_seqsp 56 17091 42 2579 0.75 0.150898134
AFFX_CTCF_HL60_seqsp 35 10800 24 2450 0.685714286 0.226851852
AFFX_p63-
ActD_ME180_seqsp 

51 15578 43 4966 0.843137255 0.318782899

AFFX_p63-
noAD_ME180_seqsp 

7 2100 6 777 0.857142857 0.37 

AFFX_PU1_HL60_seqsp 10 3000 6 350 0.6 0.116666667
AFFX_RARecA_HL60_seqsp 9 2700 4 410 0.444444444 0.151851852
AFFX_SIRT1_HL60_seqsp 9 3096 7 600 0.777777778 0.19379845 
AFFX_TFIIB_HL60_seqsp 9 3096 7 600 0.777777778 0.19379845 
ALL_cMyc_HeLa_seqsp 26 7800 15 613 0.576923077 0.078589744
ALL_p53_HCT116_seqsp 10 16373 8 3605 0.8 0.220179564
ALL_STAT1gIF_HeLa_seqsp 28 140343 28 21043 1 0.14993979 
ALL_STAT1_HeLa_seqsp 9 67527 9 11104 1 0.164437929
CDS 3891 671166 3679 568852 0.945515292 0.847557832
HisPolTAF 1043 1074493 891 252087 0.854266539 0.234610184
LateRepSeg 472 7990358 319 833825 0.675847458 0.104353898
Ng_BAF155_HeLa_seqsp 352 105600 248 26854 0.704545455 0.254299242
Ng_BAF170_HeLa_seqsp 246 73800 160 17019 0.650406504 0.230609756
Ng_cJun_HeLa_seqsp 137 41100 81 7170 0.591240876 0.174452555
Ng_cMyc-Qt_2091_seqsp 45 13500 38 4245 0.844444444 0.314444444
Ng_cMyc-St_2091_seqsp 463 138900 365 38440 0.788336933 0.27674586 
Ng_cMyc-UCD_HeLa_seqsp 254 76200 170 14966 0.669291339 0.196404199
Ng_cMyc-UT_HeLa_seqsp 330 99000 261 29078 0.790909091 0.293717172
Ng_E2F1_HeLa_seqsp 77 23100 64 7086 0.831168831 0.306753247
Ng_E2F4_2091_seqsp 27 8100 18 1921 0.666666667 0.237160494
Ng_Sp1_HCT116_seqsp 119 35700 89 8367 0.74789916 0.234369748
Ng_Sp1_Jurkat_seqsp 288 86400 168 14694 0.583333333 0.170069444
Ng_Sp1_K562_seqsp 68 20400 44 3629 0.647058824 0.177892157
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Ng_Sp3_HCT116_seqsp 76 22800 62 6266 0.815789474 0.274824561
Ng_Sp3_Jurkat_seqsp 58 17400 37 3861 0.637931034 0.221896552
Ng_Sp3_K562_seqsp 49 14700 22 1780 0.448979592 0.121088435
Ng_STAT1-
NASA_HeLa_seqsp 

16 4800 8 498 0.5 0.10375 

Ng_STAT1-P30_HeLa_seqsp 24 7200 19 2120 0.791666667 0.294444444
Ng_STAT1-Yale_HeLa_seqsp 49 14700 22 2217 0.448979592 0.150816327
Sanger_HNF3b_HePG2_seqsp 413 123900 259 21780 0.627118644 0.175786925
Sanger_HNF4a_HePG2_seqsp 443 132900 289 20342 0.652370203 0.153062453
Sanger_USF1_HePG2_seqsp 262 78600 150 12015 0.572519084 0.152862595
seq_specific 2896 1171558 2025 236942 0.699240331 0.202245215
TR 1494 1589195 1271 342513 0.850736278 0.2155261 
TR-H3K4mUnique 1163 1308181 998 290212 0.858125537 0.221843919
TSS 1119 60041 677 31274 0.605004468 0.5208774 
UCSD_STAT1-
P30_HeLa_seqsp 

41 12300 30 2970 0.731707317 0.241463415

UCSD_Suz12_HeLa_seqsp 298 89400 190 18201 0.637583893 0.203590604
uncFAIREsites 4017 1368211 2777 333444 0.691311924 0.243708025
dhs_all 2817 883862 1791 172906 0.635782748 0.195625561
Racefrags 2249 161188 827 22995 0.367718986 0.142659503
Transfrags 6965 645153 2381 75550 0.341852118 0.117104005
Overlap of Elements to MCS Loose definition of conservation 
 
 
In summary, it appears that a substantial fraction of sites outside of MCSs, ARs, and recent 
transposons may be evolving in a nonneutral manner, but most of these sites are evolving faster, 
rather than slower, than expected, and of the remaining (slow) sites, roughly 2/3 seem to be near 
the threshold for detection by our methods.  Even if we use our most inclusive set of MCSs, we 
find that roughly one and a half percent or more of sites in our "other" category may actually be 
under negative selection.  We speculate that most of these cannot be detected by our methods 
because they are weakly conserved and/or occur as isolated bases or very short constrained 
elements. However, when we take this inclusive set of MCSs, many biochemically defined 
features remain absent from these conservation measures, suggesting that there is still a set of 
unconserved elements remaining outside of our most aggressive definition of constrain, which 
shows a small (1.5%) set of uncaptured constrained bases.  
 
The same mixture decomposition methods can be used to estimate an upper bound on the 
fraction of bases in MCSs that are evolving neutrally.  We estimate this fraction at less than 0.2% 
for the "moderate" MCS set (Supplementary Figure 41) and at 13% for the "loose" MCS set. 
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SUPPLEMENTARY INFORMATION: DATA VALIDATION 
 
Identification and analysis of functional elements in 1% of the 
human genome by the ENCODE pilot project.  
 
This supplement provides the links to the key validation datasets, published separately for each class of 
experiments in the ENCODE project. In each case, a brief introduction of the data type is provided and 
then a DOI (Digital Object Identifier) and a URL which will resolve to the correct article. Where 
appropriate we have provided a short guide to which key figures or tables in the paper are used for 
validation. Most of the papers are found in the ENCODE special issue of Genome Research. 
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1. Quantitative real-time PCR (qRT-PCR) validation of ChIP-chip data 
from the NimbleGen platform (Ren Lab)  

 
 
Validation of the Chip/chip data for the CTCF data was provided by qRT-PCR as described in the 
following paper: 
 
Tae Hoon Kim, Ziedulla K. Abdullaev, Andrew D. Smith, Keith A. Ching, Dmitri I. Loukinov, 
Roland D. Green, Michael Q. Zhang, Victor V. Lobanenkov, and Bing Ren. 2007. Analysis of 
the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome. Cell 128: 1231-12 
doi:10.1016/j.cell.2006.12.048. 
 
DOI: doi:10.1016/j.cell.2006.12.048 
URL: http://dx.doi.org/doi:10.1016/j.cell.2006.12.048 
 
From the CTCF binding sites identified in the human genome, 84 sites were randomly selected for 
conventional ChIP analysis.  For negative controls, 17 promoters sequences that were not near any 
CTCF binding sites were selected.  Quantitative real-time PCR was performed with 0.5 ng of CTCF 
ChIP DNA and unenriched total genomic DNA.  The quantitative real-time PCR of each sample was 
performed in duplicate using iCycler™ and SYBR green iQ™ SYBR green supermix reagent (Bio-Rad 
Laboratories). The threshold cycle (Ct) values were calculated automatically by the iCycle iQ™ Real-
Time Dectection System Software (Bio-Rad Laboratories). Normalized Ct (ΔCt) values for each sample 
were then calculated by subtracting the Ct value obtained for the unenriched DNA from the Ct value for 
the CTCF ChIP DNA (ΔCt = Ctctcf – Cttotal). The fold enrichment of the tested promoter sequence in 
ChIP DNA over the unenriched DNA was then estimated.  Primers used for this analysis and the data 
are found in http://dx.doi.org/doi:10.1016/j.cell.2006.12.048 in Supplement Table S1, S2 and S3. 
 
The Validation of the histone modification, PolII, TAFI has not been published separately 
 
To validate the ChIP/chip data for H3K4me2, H3K4me3, H3ac, H4ac, RNA PolII, TAF1, Chromatin 
from four biological replicates of HeLa S3 cells was isolated and immunoprecipitated using 
appropriated antibodies. ChIP DNA was purified, replicate samples were pooled and quantified, and 0.5 
ng of ChIP DNA and corresponding input DNA were assayed in duplicate by quantitative real-time PCR 
using iCycler™ and SYBR-green iQ™ Supermix (Bio-Rad Laboratories, 170-8882). The cycle-number 
differences between ChIP DNA and input DNA were normalized using a pool of random controls, and 
were scored as positive if the differences were 2 standard deviations above the average of the controls. 
Three sets of genomic regions were selected and tested:   
 
Group I: A. Between 11-13 of these were from the False Discovery Rate of 1% (FDR1);B. Between 6-
12 of these were selected from fdr5, but did not overlap with fdr1; C. Between 2-13 of these were 
selected from fdr10, but did not overlap with fdr1 nor fdr5 lists; D. Between 1-4 of these were selected 
from results from the PCR product arrays, but did not overlap with the fdr1, fdr5, and fdr10 lists. 
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The validation rate for each category was computed as # of positives/ total tested. 
 
Group II. To estimate the specificity of the results, 48 random genomic regions from the ENCODE 
sequences were selected, primers were designed and real-time quantitative PCR was performed to test 
their enrichment in ChIP DNA, compared to the input DNA.  The number of negatives in this assay was 
compared to that of the ChIP-chip hit lists at different cutoffs.  If the region is negative by qPCR but 
positive by ChIP-chip, then it is counted as a false positive (FP).  It the region is negative by both 
methods then it is counted as true negatives (TN).  The specificity is calculated as TN/(TN + FP). 
 
Group III. To estimate the sensitivity of the results, 48 known promoters were selected.  Primers were 
designed and real-time quantitative PCR was performed to test their enrichment in ChIP DNA, 
compared to input DNA.  The number of positives in this assay was compared to that of the ChIP-chip 
hit lists at different cutoffs.  If the region is positive by qPCR but negative by ChIP-chip, then it is 
counted as a false negative (FN).  If the region is tested positive by both methods, then it is counted as a 
true positive (TP).  The sensitivity is calculated as TP/(TP+ FN).   
 
The results of the validation experiments are listed below: 
 

 H3K4me2 H3K4me3 H3ac H4ac RNA 
PolII 

TAF1 

Random 
Controls 

      

1% FDR 45/45 
100.00 

46/46 
100.00 

44/44 
100.00 

45/47 
95.74 

47/47 
100.00 

46/47 
97.87 

5% FDR 45/45 
100.00 

46/46 
100.00 

44/45  
97.78 

45/47 
95.74 

47/47 
100.00 

46/47 
97.87 

10% FDR 45/45 
100.00 

46/46 
100.00 

44/46  
95.65 

45/47 
95.74 

47/48 
97.92 

46/47 
97.87 

Positive 
Controls 

      

1% FDR 28/30 
93.33 

30/31 
96.77 

30/33 
90.91 

13/26 
50.00 

18/30 
60.00 

16/33 
48.48 

5% FDR 30/30 
100.00 

31/31 
100.00 

33/33 
100.00 

18/26 
69.23 

22/30 
73.33 

20/33 
60.61 

10% FDR 30/30 
100.00 

31/31 
100.00 

33/33 
100.00 

20/26 
76.92 

25/30 
83.33 

22/33 
66.67 

PCR Arrays 
Only 

30/30 
100.00 

31/31 
100.00 

33/33 
100.00 

76.92 25/30 
83.33 

22/33 
66.67 

Validation       
1% FDR 10/12 

83.33 
10/11 
90.91 

8/11 
72.73 

9/13 
69.23 

12/12 
100.00 

13/13 
100.00 

5% FDR 3/12 
25.00 

1/12 
8.33 

5/6 
83.33 

9/11 
81.82 

12/12 
100.00 

10/11 
90.91 

10% FDR 2/13 2/12 0/2 8/11 5/6 10/11 
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15.38 16.67 0.00 72.73 83.33 90.91 
PCR Arrays 
only 

1/4 
25.00 

2/2 
100.00 

1/3 
33.33 

1/4 
25.00 

1/1 
100.00 

1/3 
33.33 

 
 

2. Validation of histone modification ChIP-chip data by qPCR (Dunham 
Lab) 

 
Koch, C.M., Andrews, R.M., Flicek, P., Dillon, S.C., Karaöz, U., Clelland, G.K., Wilcox, S., Beare, 
D.M., Fowler, J.C., Couttet, P., et al.  2007.  The landscape of histone modifications across 1% of the 
human genome in five human cell lines.  Genome Res.  doi:  10.1101/gr.5704207 
 
DOI: 10.1101/gr.5704207 
URL: http://dx.doi.org/10.1101/gr.5704207 
 

In order to validate the ChIP-CHIP data, we identified and developed working assays for 74 enriched 
regions and 27 background signal regions for testing by quantitative PCR (qPCR) on anti-H3K4me3 
ChIP material from the GM06990 cell line (for results, see Koch et al. doi:10.1101/gr.5704207).2 
By designing qPCR assays tiling through six representative ChIP-CHIP enrichment peaks we were able 
to reproduce qualitatively the enrichment profiles observed on the microarray (see Figure S2, Koch et al. 
doi:10.1101/gr.5704207). 
 
Real time PCR  
The enrichment (relative copy number) was determined in real-time PCR reactions using either ChIP 
DNA or non enriched DNA as template.  For primer pair design and methods see Koch et al. 
doi:10.1101/gr.5704207).  

3. Validation of Replication Timing Data (Dutta Lab) 
 
Karnani, N., Taylor, C., Malhotra, A., Dutta, A.  2007.  Pan-S replication patterns and chromosomal 
domains defined by genome tiling arrays of ENCODE genomic areas.  Genome Res.  doi:  
10.1101/gr.5427007. 
 
DOI: 10.1101/gr.5427007 
URL http://dx.doi.org/10.1101/gr.5427007 
 
 
The tiling array based replication timing data from HeLa cells has been validated by interphase FISH 
and is detailed in Karnani et al. doi:10.1101/gr.5427007. Interphase FISH probes from ENCODE regions 
are listed alongside FISH results of replication time in HeLa cells released from thymidine/aphidicolin 
block in Karnani et al. Supplemental Table 2. 
 
Tiling array data for time of replication and interphase FISH results for validating replication timing in 
HeLa are presented in Karnani et al. Figures 2 and 3, respectively. 

doi: 10.1038/nature05874    SUPPLEMENTARY INFORMATION

www.nature.com/nature 4



 

 

 
 

4.  Verification of HL60 cytosolic polyA+ RNA TxFrag results 
(Affymetrix Group - Phil Kapranov) 

Denoeud, F., Kapranov, P., Ucla, C., Frankish, A., Castelo, R., Drenkow, J., Lagarde, J., Alioto, T., 
Manzano, C., Chrast, J.  2007.   Prominent use of distal 5’ transcription start sites and discovery of a 
large number of additional exons in ENCODE regions.  Genome Res.  doi:  10.1101/gr.5660607. 
 
This section is taken from the Supplementary Information of the present manuscript:  The ENCODE 
Consortium.  The ENCODE pilot project: Identification and analysis of functional elements in 1% of the 
human genome and from Denoeud et al. doi:10.1101/gr.5660607. 
 
DOL: 10.1101/gr.5660607 
URL: http://dx.doi.org/10.1101/gr.5660607 
 

Validation Supplement Table 2 Validation results of Affymetrix genome tiling array maps 
  Successful RACE reactions (%)   
  Index 

TF 
5' RACE 3' RACE 5' and 3' 

RACE 
5' or 3' 
RACE 

Transcription on 
both strands 

No transcript 
detected 

Exonic 20 19 (95) 19 (95) 16 (80) 20 (100) 19 (95) 0 (0) 
Intronic 90 71 (79) 77 (86) 66 (73) 79 (88) 65 (72) 11 (12) 
Intergenic 90 62 (69) 65 (72) 44 (49) 77 (86) 46(51) 13 (14) 

Non 
Transfrag 
Regions 

100 66 (66) 60 (60) 45 (45) 75 (75) 44 (44) 25 (25) 

Numbers represent transfrags. Numbers in () represent % of total number of regions tested. 

 
200 transfrags were randomly chosen from the map of HL60 cell line un-stimulated (00hr time point) 
with retinoic acid. The transfrags consisted of 90 intergenic transfrags, 90 intronic and 20 exonic 
transfrags. Intergenic or intronic transfrags were defined as correspondingly non-overlapping or 
overlapping the bounds of known genes from the UCSC Known Gene track on the hs.NCBIv35 version 
of the genome. Intergenic and intronic transfrags were selected not to overlap any mRNA or EST 
annotation. Information on the index transfrags, primers used for this analysis can be found at 
http://genome.imim.es/gencode/RACEdb. 100 non-transfrag regions that mimic transfrags in length 
were randomly selected throughout the non-repetitive portions of the ENCODE regions. 
 
5’ and 3’ RACE analysis was performed on DNAseI-treated cytosolic polyA+ RNA from un-stimulated 
HL60 cell line for each transfrag for each strand of the genome totaling to 4 RACE reactions per 
transfrag. RACE reactions were performed essentially as described in Kapranov et al6 with the following 
modifications. cDNA synthesis for the 5’RACE was performed with a pool of 12 gene-specific primers. 
cDNA synthesis was done with two reverse-transcriptases: Superscript II and Thermoscript (both form 
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Invitrogen) in two separated reactions with 50 ng of polyA+ RNA each. The cDNA reactions were 
pooled for the RT-PCR step. cDNA synthesis for the 3’RACE was performed with oligo-dT 3’ CDS 
primer as in Kapranov et al5. The cDNA was treated with RNAse A/T1 cocktail (Ambion) and RNAse H 
(Epicentre), purified over Qiagen’s columns and pooled for the RT-PCR step. 40 ng of purified cDNA 
were used as starting material for each RT-PCR reaction. Three rounds of amplifications were 
performed at the RT-PCR step of the RACE utilizing 3 transfrag-specific nested RT-PCR primers for 
both 3’ and 5’ RACE. After each round, the RT-PCR reactions were purified using QIAquick 96 PCR 
purification system (Qiagen) and eluted in 70 µl. 1 µl of the first round amplification was used as a 
template for the second round and 0.01 µl of the second round RT-PCR reaction was used as a template 
for the third round. Oligonucleotides 3’ CDS, UPL/UPS and NUP (Clontech SMART II RACE 
protocol) were used as common primes for the first, second and third round of RT-PCR. Each round of 
amplification consisted of 25 cycles of PCR (94°C for 20 sec; 62°C for 30 sec; 72°C for 5 min) followed 
by 10 min at 72°C. Products of the final round of RT-PCRs were purified using QIAquick 96, pooled 
and hybridized to ENCODE arrays as described above. The maps were generated using the Tiling 
Analysis Software (TAS; 
http://www.affymetrix.com/support/developer/downloads/TilingArrayTools/index.affx)  with bandwidth 
of 50. RACEfrags were generated using threshold of 100, maxgap =50 and minrun =50.   
.  
The Affymetrix RACEfrags were filtered so that each pool contains RACEfrags that are unique to the 
pool. GENCODE RACEfrags were filtered against Affymetrix RACEfrags. Regions overlapping 
RACEfrags from the Affymetrix pools were removed. Pooling was done so that the index transfrags 
within each pool are at least 40 kbp apart from each other.  This is to facilitate the unambiguous 
assignment of the parent child relationships between the index transfrag and the RACEfrag. A region 
(transfrag or non-transfrag) was considered to be positive for presence of a transcript of either 5’ or 3’ 
RACE reaction was scored positive on either strand. 
 
To control for genomic DNA contamination, 3’ RACE reactions were conducted on the 100 non-
transfrag regions with the omission of the reverse transcriptase. Only 1 region was scored as positive. 
 
The data for the entire verification dataset can loaded from a centralized RACE database RACEdb 
located at this URL  http://genome.imim.es/gencode/RACEdb. Also, the profile of each RACE reaction 
for each of the 300 index regions could be viewed via the links provided in this database in the UCSC 
browser or loaded as a BED file.  
 

5. Validation experiments for DNase-chip (Crawford Group) 
 
Crawford, G. E. et al. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites 
using tiled microarrays. Nat Methods 3, 503-9 (2006) 
 
DOI: doi:10.1038/nmeth888 
URL: http://dx.doi.org/doi:10.1038/nmeth888 
 
Validation was provided by Real time PCR on putative DNaseHS sites. 7 different catagories of 
sites were used depending on the presence of sites at different DNase concentrations. Data is 
shown in Figure 2a,b and in Supplementary Table 1. 
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6. Experimental Testing of Connectivity of Genomic Regions (Yale Group 
– Joel Rozowsky) 

 
Rozowsky, J., Newburger, D., Sayward, F., Wu, J., Jordan, G., Korbel, J.O., Nagalakshmi, U., Yang, J., 
Zheng, D., Guigo, R., et al.  2007.  The DART classification of unannotated transcription within the 
ENCODE regions:  Associating transcription with known and novel loci.  Genome Res.  doi:  
10.1101/gr.5696007. 
 
DOI: 10.1101/gr.5696007 
URL: http://dx.doi.org/10.1101/gr.5696007 
 
RT-PCR and Sequencing was carried out for novel TARs expressed in placental RNA as described in 
Rozowsky et al. doi:10.1101/gr.5696007.10  A table of the regions selected for RT-PCR validation 
testing for connectivity and their corresponding annotation and primer sequences are indicated in 
Rozowsky et al. Supplemental Table 1. 
 
The sequences, forward and reverse primer sequences, the length of the unspliced genomic span 
between the primers and the length of the sequenced product obtained for PCR products that were 
sequenced is dispayed in Rozowsky et al. Supplemental Table 2. 
 
 

7. Validation of STAT1 ChIP-chip and ChIP-PET (Yale Group – Mike 
Snyder)  

 
Euskirchen,  G.M., Rozowsky, J., Wei, C.-L., Lee, W.H., Zhang, Z.D., Hartmen, S., Emanuelsson, O., 
Stolc, V., Weissman, S., Gerstein, M., et al.  2007.  Mapping of transcription factor binding regions in 
mammalian cells by ChIP:  Comparison of array and sequencing based technologies.  Genome Res.  doi:  
10.1101/gr.5583007 
 
DOI: 10.1101/gr.5583007 
URL: http://dx.doi.org/10.1101/gr.5583007 
 
 
Yale Validation 
Stat1 ChIP-chip and ChIP-PET datasets were validated in at least two biological replicate experiments 
using a quantitative PCR assay. Details of this analysis are available in Euskirchen et al. 
doi:10.1101/gr.558300711.  
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8. Validation of DnaseI hypersensitive site (DHS) mapping by DNase-
array and QCP (Stamatoyannopoulos Lab) 

 
Quantitative Chromatin Profiling (QCP) 
Dorschner MO, Hawrylycz M, Humbert R, Wallace JC, Shafer A, Kawamoto J, Mack J, Hall R, Goldy 
J, Sabo PJ, Kohli A, Li Q, McArthur M, Stamatoyannopoulos JA.  High-throughput localization of 
functional elements by quantitative chromatin profiling.  Nat Methods 1, 219-25 (2004). 
 
DOI: 10.1038/nmeth721 
URL http://dx.doi.org/10.1038/nmeth721 
 
To validate that DHSs identified by QCP correspond with classical DnaseI hypersensitive sites, we 
compared QCP data (high-throughput real-time quantitative PCR using end-to-end tiled ~225bp 
amplicons) with previously published DNaseI hypersensitivity Southern data from multiple loci (alpha- 
and beta-globin, T-cell receptor alpha, c-myc, adenosine deaminase, CD2) in erythroid, lymphoid, and 
hepatic cell types.  100% of known DHSs were detected.  Novel sites were verified by conventional 
Southern blotting.  Results are shown in Figs. 2-6, Supplementary Figs. 1-2, and Supplementary Table 1. 
 
In unpublished studies during the ENCODE Pilot Project we additionally performed extensive 
conventional DnaseI hypersensitivity mapping in GM06990, CACO2, K562, HepG2, and SKnSH 
chromatin using conventional hypersensitivity Southerns.  In total we performed 1,114 Southern end-
label experiments.  On the basis of these experiments the sensitivity of QCP was calculated to be 94.1% 
and specificity 99.8%. 
 
Dnase-array 
Sabo PJ, Kuehn MS, Thurman R, Johnson BE, Johnson EM, Cao H, Yu M, Rosenzweig E, Goldy J, 
Haydock A, Weaver M, Shafer A, Lee K, Neri F, Humbert R, Singer MA, Richmond TA, Dorschner 
MO, McArthur M, Hawrylycz M, Green RD, Navas PA, Noble WS, Stamatoyannopoulos JA. Genome-
scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat Methods 3, 511-8 
(2006) 
 
DOI: 10.1038/nmeth890 
URL http://dx.doi.org/10.1038/nmeth890 
 
To validate that DHSs identified by DNase-array correspond with classical DnaseI hypersensitive sites, 
we performed extensive conventional DnaseI hypersensitivity Southern mapping in lymphoblastoid 
(GM06990) cells. Results are shown in Fig. 2, Supplementary Fig. 1, Table 1 and Supplementary Table 
2.   
 

9. Validation of E2F1 ChIP-chip results (Farnham Lab) 
 
Mark Bieda, Xiaoqin Xu, Michael A. Singer, Roland Green and Peggy J. Farnham Unbiased 
location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human 
genome 
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DOI : 10.1101/gr.4887606 
URL: http://dx.doi.org/ 10.1101/gr.4887606 
 
PCR quantification was performed using standard methods; in brief, primers were designed to test a 
subset of predicted binding sites. The PCR product for the ChIP sample was compared to the control 
sample. PCR confirmation experiments are described in Bieda et al. doi:10.1101/gr.4887606 Results of 
PCR confirmation of peak predictions are in Bieda et al. Supplemental Table 1.  
 

10. Quantitative PCR (qPCR) validation of FAIRE sample (Iyer and 
Lieb Labs) 

 
Paul G. Giresi, Jonghwan Kim, Ryan M. McDaniell, Vishwanath R. Iyer, and Jason D. Lieb. 2006. 
FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements 
from human chromatin. Genome Res. Published December 19, doi:10.1101/gr.5533506. 
 
DOI: 10.1101/gr.5533506 
URL: http://dx.doi.org/10.1101/gr.5533506 
 
The FAIRE procedure and qPCR validation is described in Giresi et al. 10.1101/gr.5533507.14   
FAIRE validation results for a portion of chromosome 21 are displayed in Giresi et al. Figure 3. 

  

11. Quantitative PCR validation of ChIP-chip data (Struhl Lab) 
 
The validation of this data has not yet been separately published. 
 
 
The validation qPCR was performed a previously described in Beida etal, Genome Research, 16, 595-
605. using an Applied Biosystems 7000 sequence detector and an Applied Biosystems 7700 sequence 
detector for SYBR green fluorescence. The PCR program was: 95 oC 10 min, followed by 40 cycles of 
95 oC, 30 sec, 60 oC, 45 sec; 72 oC, 1 min. Fold enrichment for a for a called site from an array region 
was determined relative to a non-enriched region reference region determined for each factor. The 
formula used was: fold enrichment = 1.9-(ΔCTexpt-ΔCTref) where ΔCT is the cycle threshold (Ct) 
difference between ChIP DNA and input material, calculated for experimental and reference regions, 
and 1.9 is the mean primer slope.  Sites tested were selected to encompass a large range of pValues as 
well as several array regions that were not called sites for a specific factor for use as negative controls.  
A called site was considered a true site if the qPCR fold enrichment value was greater than or equal to 3 
standard deviations above the mean of the negative controls sites. 
 
The pValue used to threshold the list of potential sites was determined by extrapolation qPCR results of 
true versus false sites along the list of pValues such that a 95% accuracy rate was required for qPCR.  
Therefore, by definition the final number of sites provided in table 1 are based on a 5% FDR.  False 
negative rate was determined by calculating the percentage of true sites tested by qPCR that fall below 
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the pValue cutoff.  This percentage was then applied to the original site lists to estimate the number of 
potential false negative sites for each factor. 
 
 

Validation Supplement Table 6: Summary of threshold sites, false discovery, and false negative 
rates. 

 
**Pvalue Threshold of H3 is 100% as all predicted sites tested by qPCR were positive and thus a 0% 
FDR is used for this factor. 
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Validation Supplement Figure 1: QPCR validation of Brg1.  0 hour.  55 array regions were checked, 
including 52 called sites and 3 non-sites.  The qPCR enrichment cut off is 3.17 fold. 

 
 

 
Validation Supplement Figure 2: QPCR validation of C/EBPε.  8 hour.  64 array regions were 
checked, including 62 called sites and 2 non-sites.  The qPCR enrichment cut off is 2 fold. 
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Validation Supplement Figure 3: QPCR validation of H3ac.  2 hour.  44 array regions were checked, 
including 40 called sites and 4 non-sites.  The qPCR enrichment cut off is 6.8 fold. 

 
 

 
Validation Supplement Figure 4: QPCR validation of H4ac.  0 hour.    67 array regions were 
checked, including 65 called sites and 2 non-sites.  The qPCR enrichment cut off is 3.4 fold. 
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Validation Supplement Figure 5: QPCR validation of H3K27me3. 8 hour.  78 array regions were 
checked, including 73 called sites and 5 non-sites.  The qPCR enrichment cut off is 2.34 fold. 

 

 
Validation Supplement Figure 6: QPCR validation of RNA PolII.  0 hour.    52 array regions were 
checked including 47 called sites and 5 non-sites.  The qPCR enrichment cut off is 3 fold. 
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Validation Supplement Figure 7: OPCR Validation of p300.  2 hour.   40 array regions were 
checked, including 38 called sites and 2 non-sites.  The qPCR enrichment cut off is 2 fold. 

 

 
Validation Supplement Figure 8: QPCR validation of SirT1.  32 hour.  22 array regions were 
checked, including 19 called sites and 3 non-sites.  The qPCR cut off is 6.99 fold. 
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